Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
基本信息
- 批准号:8476215
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-10 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAlgorithmsBiological MarkersBiomechanicsBlood VolumeBlood flowBreastCaliberCancer PatientCharacteristicsCholineClassification SchemeClinicalClinical TrialsCustomDataDiagnosticDiffusionDiseaseEarly treatmentExhibitsFatty acid glycerol estersFunctional ImagingGoalsHemoglobinImageImaging TechniquesJointsLesionLipidsMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMalignant - descriptorMammary Gland ParenchymaMammary UltrasonographyMapsMeasurementMeasuresMedicalMetabolicMetabolic MarkerMetabolismMethodsModalityMonitorNear-Infrared SpectroscopyNeoadjuvant TherapyNormal tissue morphologyOperative Surgical ProceduresOptical TomographyOpticsOutcomeOxygenOxygen ConsumptionPatientsPositron-Emission TomographyPredictive ValueProceduresProtocols documentationROC CurveResidual stateResolutionScanningSpecificityStagingSystemTechniquesTestingTimeTissuesTumor VolumeValidationVariantWaterWeightWorkblood oxygen level dependentbreast lesioncancer diagnosischemotherapychromophorehealthy volunteerhemodynamicsimprovedinstrumentationmalignant breast neoplasmnoveloptical fiberoptical imagingreconstructionresponsesuccesstherapy outcometomographytumor
项目摘要
Primary systemic (neoadjuvant) therapy is routinely used for locally advanced breast cancer patients before
surgery to down-stage the disease and increase the chances of a successful outcome. Many patients though
do not respond to neoadjuvant therapy, and may be better off switching to a different treatment regime, or
progressing to surgery immediately. However, therapy monitoring is difficult because current clinical
examination and x-ray/ultrasound mammography follow-ups correlate poorly with final therapy pathological
outcome. Both magnetic resonance imaging (MRI) and positron emission tomography (PET) have been
evaluated as early predictors of response, with studies showing that 18F-FDG PET as well as diffusion
weighted (DW) MRI and choline-compounds MR spectroscopy (tCho-MRS) measurements correspond well
with therapy success within a few weeks from the beginning of treatment. Unfortunately, availability (PET),
complexity (tCho-MRS), and specificity (MRI) limit the applicability of these methods. Consequently, there is a
need to develop non-invasive specific early prediction approaches that more easily integrate into medical
practice. A potential answer may be offered by near infrared spectroscopy and tomography (NIRS-DOT).
NIRS-DOT is a novel functional imaging technique that can offer images of tissue chromophores such as oxy
(HbO) and deoxy hemoglobin (HbR), water and lipids, and small studies have hinted at its potential to predict
therapy outcome with high accuracy as early as one week after the start of treatment. Further, recent
technological advancements have permitted DOT to reach high time resolution (> 1Hz), allowing new types of
functional information to be probed by dynamic imaging. In particular, our group has obtained promising initial
results monitoring the response of breast tissue to external compression. Tissue viscoelastic response to
compression causes hemodynamic (blood volume) changes with bi-phasic temporal profiles likely to
differentiate healthy tissues from breast lesions. Further, the interplay of hemodynamics and tissue oxygen
metabolism leads to hemoglobin oxygenation transients that offer the opportunity to estimate tissue oxygen
consumption (OC) and blood flow (BF) from time-resolved optical data.
The overall goal of this proposal is to combine MRI and NIRS-DOT to characterize the predictive value
of compression-enabled measurements of tissue hemodynamics, blood flow and oxygen consumption as new
biomarkers sensitive to therapy progress and quantify their relationship to final pathological outcome.
Structural information from the MRI scans will be used as prior information for the optical reconstructions and
dynamic optical and HbR-related MR blood oxygen level dependent (BOLD) images will be simultaneously
acquired enabling a fusion approach for reconstructing time-resolved hemodynamic maps and BF/OC
distributions. Difference BOLD images will be cross-validated against corresponding HbR maps. The work will
culminate with a clinical trial to assess the early therapy outcome predictive ability of the new biomarkers.
原发性全身(新辅助)治疗以前是局部晚期乳腺癌患者的常规治疗方法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Alexandru Carp其他文献
Stefan Alexandru Carp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Alexandru Carp', 18)}}的其他基金
Noninvasive neuromonitoring to guide hemodynamic optimization of cerebral perfusion after return of spontaneous circulation in a swine model of cardiac arrest
无创神经监测指导心脏骤停猪模型自主循环恢复后脑灌注的血流动力学优化
- 批准号:
10591725 - 财政年份:2022
- 资助金额:
$ 23.48万 - 项目类别:
Non-invasive monitoring of brain health during cardio-pulmonary bypass
体外循环期间大脑健康的无创监测
- 批准号:
10319491 - 财政年份:2017
- 资助金额:
$ 23.48万 - 项目类别:
Dynamic Optical Imaging Biomarkers of Tumor Response to Therapy
肿瘤治疗反应的动态光学成像生物标志物
- 批准号:
9045591 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:
Dynamic Optical Imaging Biomarkers of Tumor Response to Therapy
肿瘤治疗反应的动态光学成像生物标志物
- 批准号:
9250612 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:
Dynamic Optical Imaging Biomarkers of Tumor Response to Therapy
肿瘤治疗反应的动态光学成像生物标志物
- 批准号:
8888513 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
- 批准号:
8665421 - 财政年份:2010
- 资助金额:
$ 23.48万 - 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
- 批准号:
7871749 - 财政年份:2010
- 资助金额:
$ 23.48万 - 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
- 批准号:
8088224 - 财政年份:2010
- 资助金额:
$ 23.48万 - 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
- 批准号:
8459212 - 财政年份:2010
- 资助金额:
$ 23.48万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant














{{item.name}}会员




