Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach

使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像

基本信息

  • 批准号:
    8665421
  • 负责人:
  • 金额:
    $ 24.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-10 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Primary systemic (neoadjuvant) therapy is routinely used for locally advanced breast cancer patients before surgery to down-stage the disease and increase the chances of a successful outcome. Many patients though do not respond to neoadjuvant therapy, and may be better off switching to a different treatment regime, or progressing to surgery immediately. However, therapy monitoring is difficult because current clinical examination and x-ray/ultrasound mammography follow-ups correlate poorly with final therapy pathological outcome. Both magnetic resonance imaging (MRI) and positron emission tomography (PET) have been evaluated as early predictors of response, with studies showing that 18F-FDG PET as well as diffusion weighted (DW) MRI and choline-compounds MR spectroscopy (tCho-MRS) measurements correspond well with therapy success within a few weeks from the beginning of treatment. Unfortunately, availability (PET), complexity (tCho-MRS), and specificity (MRI) limit the applicability of these methods. Consequently, there is a need to develop non-invasive specific early prediction approaches that more easily integrate into medical practice. A potential answer may be offered by near infrared spectroscopy and tomography (NIRS-DOT). NIRS-DOT is a novel functional imaging technique that can offer images of tissue chromophores such as oxy (HbO) and deoxy hemoglobin (HbR), water and lipids, and small studies have hinted at its potential to predict therapy outcome with high accuracy as early as one week after the start of treatment. Further, recent technological advancements have permitted DOT to reach high time resolution (> 1Hz), allowing new types of functional information to be probed by dynamic imaging. In particular, our group has obtained promising initial results monitoring the response of breast tissue to external compression. Tissue viscoelastic response to compression causes hemodynamic (blood volume) changes with bi-phasic temporal profiles likely to differentiate healthy tissues from breast lesions. Further, the interplay of hemodynamics and tissue oxygen metabolism leads to hemoglobin oxygenation transients that offer the opportunity to estimate tissue oxygen consumption (OC) and blood flow (BF) from time-resolved optical data. The overall goal of this proposal is to combine MRI and NIRS-DOT to characterize the predictive value of compression-enabled measurements of tissue hemodynamics, blood flow and oxygen consumption as new biomarkers sensitive to therapy progress and quantify their relationship to final pathological outcome. Structural information from the MRI scans will be used as prior information for the optical reconstructions and dynamic optical and HbR-related MR blood oxygen level dependent (BOLD) images will be simultaneously acquired enabling a fusion approach for reconstructing time-resolved hemodynamic maps and BF/OC distributions. Difference BOLD images will be cross-validated against corresponding HbR maps. The work will culminate with a clinical trial to assess the early therapy outcome predictive ability of the new biomarkers.
首次全身(新辅助)治疗以前是局部晚期乳腺癌患者的常规治疗方法 手术降低了疾病的影响,增加了成功结局的机会。不过,很多病人 对新辅助治疗没有反应,最好切换到不同的治疗方案,或者 正在立即进行手术。然而,治疗监测是困难的,因为目前的临床 检查和x射线/超声乳房X光摄影随访与最终治疗病理相关性较差。 结果。磁共振成像(MRI)和正电子发射断层扫描(PET)都已经 被评估为反应的早期预测因子,研究表明18F-FDG PET以及弥散 加权(DW)MRI和胆碱化合物磁共振波谱(Tcho-MRS)测量具有很好的一致性 在治疗开始后的几周内治疗成功。不幸的是,可用性(PET), 复杂性(Tcho-MRS)和特异性(MRI)限制了这些方法的适用性。因此,有一个 需要开发更容易集成到医疗中的非侵入性特定早期预测方法 练习一下。近红外光谱和层析成像(NIRS-DOT)可能提供一个潜在的答案。 NIRS-DOT是一种新的功能成像技术,可以提供OXY等组织发色团的图像 高压氧(HBO)和脱氧血红蛋白(HBr)、水和脂类,以及小型研究都暗示了它的潜在预测能力 最早在治疗开始一周后即可获得高准确率的治疗结果。更进一步,最近 技术进步使DOT能够达到高时间分辨率(>1赫兹),从而允许新类型的 需要通过动态成像探测的功能信息。特别是,我们的团队已经取得了有希望的初步成果 结果监测乳房组织对外压的反应。组织粘弹性响应 压迫导致血流动力学(血容量)改变,双相时间剖面可能 区分健康组织和乳房病变。此外,血流动力学和组织氧的相互作用 新陈代谢导致血红蛋白氧合的瞬变,这为估计组织氧气提供了机会 来自时间分辨光学数据的消耗量(OC)和血流量(BF)。 这项建议的总体目标是结合MRI和NIRS-DOT来表征预测价值 组织血流动力学、血流量和耗氧量的压缩测量是新的 对治疗进展敏感的生物标记物,并量化它们与最终病理结果的关系。 来自MRI扫描的结构信息将被用作光学重建的先验信息 动态光学和与HBr相关的MR血氧水平依赖(BOLD)图像将同时显示 获得用于重建时间分辨血流动力学图和BF/OC的融合方法 分配。差异粗体图像将对照相应的HBR地图进行交叉验证。这项工作将 最终通过临床试验评估新生物标记物的早期治疗结果预测能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Alexandru Carp其他文献

Stefan Alexandru Carp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefan Alexandru Carp', 18)}}的其他基金

Noninvasive neuromonitoring to guide hemodynamic optimization of cerebral perfusion after return of spontaneous circulation in a swine model of cardiac arrest
无创神经监测指导心脏骤停猪模型自主循环恢复后脑灌注的血流动力学优化
  • 批准号:
    10591725
  • 财政年份:
    2022
  • 资助金额:
    $ 24.15万
  • 项目类别:
Non-invasive monitoring of brain health during cardio-pulmonary bypass
体外循环期间大脑健康的无创监测
  • 批准号:
    10319491
  • 财政年份:
    2017
  • 资助金额:
    $ 24.15万
  • 项目类别:
Dynamic Optical Imaging Biomarkers of Tumor Response to Therapy
肿瘤治疗反应的动态光学成像生物标志物
  • 批准号:
    9045591
  • 财政年份:
    2015
  • 资助金额:
    $ 24.15万
  • 项目类别:
Dynamic Optical Imaging Biomarkers of Tumor Response to Therapy
肿瘤治疗反应的动态光学成像生物标志物
  • 批准号:
    9250612
  • 财政年份:
    2015
  • 资助金额:
    $ 24.15万
  • 项目类别:
Dynamic Optical Imaging Biomarkers of Tumor Response to Therapy
肿瘤治疗反应的动态光学成像生物标志物
  • 批准号:
    8888513
  • 财政年份:
    2015
  • 资助金额:
    $ 24.15万
  • 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
  • 批准号:
    8476215
  • 财政年份:
    2010
  • 资助金额:
    $ 24.15万
  • 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
  • 批准号:
    7871749
  • 财政年份:
    2010
  • 资助金额:
    $ 24.15万
  • 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
  • 批准号:
    8088224
  • 财政年份:
    2010
  • 资助金额:
    $ 24.15万
  • 项目类别:
Time Resolved Breast Imaging Using a Combined MRI and Optical Tomography Approach
使用 MRI 和光学断层扫描相结合的方法进行时间分辨乳腺成像
  • 批准号:
    8459212
  • 财政年份:
    2010
  • 资助金额:
    $ 24.15万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了