Spectral Spatial RF Pulses for Gradient Echo fMRI

用于梯度回波 fMRI 的频谱空间射频脉冲

基本信息

  • 批准号:
    8437270
  • 负责人:
  • 金额:
    $ 25.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal "Spectral-Spatial RF Pulses for Gradient Echo MRI" is an MRI technology development project to design spectral-spatial Radio Frequency (RF) excitations using single and multiple transmitters at 3T. These pulses will be designed with the goal of suppressing unwanted lipid signal, reducing susceptibility artifacts, and improving slice profile (B1+) uniformity in gradient echo MRI. Gradient echo applications such as blood oxygen level dependent (BOLD) brain functional MRI (fMRI) are plagued by large signal voids in the inferior brain regions due to magnetic susceptibility variations. Furthermore, the high fields required for good gradient echo contrast make the images prone to intensity variations from B1+ inhomogeneity. Methods that address these limitations are important to exploit the full benefits of MRI for improved health care and research. We first propose 2D spectral spatial pulses for slice and frequency selectivity on one or multiple transmitters. These pulses can be used for both lipid suppression and the cancellation of the through-plane susceptibility gradient. The susceptibility artifact correction assumes that the through-plane gradient is a function of off- resonance frequency. Acquiring field maps to determine the spatial distribution of through-plane gradients and off-resonance will test this assumption. The spatial variations of the maps will then be exploited using parallel transmission methods. The next approach will be to design 4D spectral-spatial pulses for parallel transmitters to develop excitations that simultaneously correct for through-plane susceptibility artifact, in-plane transmitter (B1+) inhomogeneity, and provide lipid suppression. The pulse generation algorithms will then be ported for use on graphics programming units (GPUs) for increased speed. The pulses will be tested and characterized with simulations and phantom and human control gradient echo imaging studies. Final validation of the pulses will use human control scanning with susceptibility weighted imaging (SWI), T2* mapping, and breath-holding BOLD fMRI experiments. Success in developing the methods described in this proposal will overcome major limitations in gradient echo MRI, making feasible a broad range of clinical applications not previously possible. Furthermore, the application spectral-spatial pulses and parallel transmitters is novel to this proposal and represent a big step forward in multi-dimensional RF pulse design.
描述(由申请人提供):本提案“用于梯度回波MRI的频谱-空间射频脉冲”是一项MRI技术开发项目,旨在设计使用3 T下的单个和多个发射器的频谱-空间射频(RF)激励。设计这些脉冲的目的是抑制不需要的脂质信号,减少磁化率伪影,并改善梯度回波MRI中的切片轮廓(B1+)均匀性。梯度回波应用,如血氧水平依赖(BOLD)脑功能MRI(fMRI)的困扰,由于磁化率的变化在大脑下部区域的大信号空隙。此外,良好的梯度回波对比度所需的高场使图像易于因B1+不均匀性而发生强度变化。解决这些局限性的方法对于充分利用MRI的优势来改善医疗保健和研究非常重要。我们首先提出了一个或多个发射机上的切片和频率选择性的2D频谱空间脉冲。这些脉冲可用于脂质抑制和消除通过平面的磁化率梯度。磁化率伪影校正假设跨平面梯度是非共振频率的函数。获取场图以确定通过平面梯度和非共振的空间分布将测试该假设。然后将利用并行传输方法来利用地图的空间变化。下一种方法将是为并行发射器设计4D频谱-空间脉冲,以开发同时校正跨平面磁化率伪影、平面内发射器(B1+)不均匀性并提供脂质抑制的激励。然后,脉冲生成算法将被移植到图形编程单元(GPU)上使用,以提高速度。将通过模拟、体模和人体对照梯度回波成像研究对脉冲进行测试和表征。脉冲的最终验证将使用人类对照扫描与磁敏感加权成像(SWI),T2* 映射,屏气BOLD功能磁共振成像实验。成功开发本提案中描述的方法将克服梯度回波MRI的主要局限性,使以前不可能的广泛临床应用成为可能。此外,频谱空间脉冲和并行发射机的应用对于该提议是新颖的,并且代表了多维RF脉冲设计的一大步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Andrew Stenger其他文献

Victor Andrew Stenger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Andrew Stenger', 18)}}的其他基金

Radial Echo Volumar Imaging
径向回波容积成像
  • 批准号:
    10213724
  • 财政年份:
    2020
  • 资助金额:
    $ 25.09万
  • 项目类别:
Radial Echo Volumar Imaging
径向回波容积成像
  • 批准号:
    9980730
  • 财政年份:
    2020
  • 资助金额:
    $ 25.09万
  • 项目类别:
Radial Echo Volumar Imaging
径向回波容积成像
  • 批准号:
    10378640
  • 财政年份:
    2020
  • 资助金额:
    $ 25.09万
  • 项目类别:
Radial Echo Volumar Imaging
径向回波体积成像
  • 批准号:
    10608119
  • 财政年份:
    2020
  • 资助金额:
    $ 25.09万
  • 项目类别:
Fast Whole-Brain Direct Myelin Magnetic Resonance Imaging
快速全脑直接髓磷脂磁共振成像
  • 批准号:
    9261522
  • 财政年份:
    2016
  • 资助金额:
    $ 25.09万
  • 项目类别:
Spectral Spatial RF Pulses for Gradient Echo fMRI
用于梯度回波 fMRI 的频谱空间射频脉冲
  • 批准号:
    8239585
  • 财政年份:
    2010
  • 资助金额:
    $ 25.09万
  • 项目类别:
Spectral Spatial RF Pulses for Gradient Echo fMRI
用于梯度回波 fMRI 的频谱空间射频脉冲
  • 批准号:
    8055365
  • 财政年份:
    2010
  • 资助金额:
    $ 25.09万
  • 项目类别:
Spectral Spatial RF Pulses for Gradient Echo fMRI
用于梯度回波 fMRI 的频谱空间射频脉冲
  • 批准号:
    7861946
  • 财政年份:
    2010
  • 资助金额:
    $ 25.09万
  • 项目类别:
Parallel MRI for High Field Neuroimaging
用于高场神经成像的并行 MRI
  • 批准号:
    8852102
  • 财政年份:
    2007
  • 资助金额:
    $ 25.09万
  • 项目类别:
Parallel MRI for High Field Neuroimaging
用于高场神经成像的并行 MRI
  • 批准号:
    7908869
  • 财政年份:
    2007
  • 资助金额:
    $ 25.09万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.09万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了