Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
杂交链式反应:生物成像的原位放大
基本信息
- 批准号:8531239
- 负责人:
- 金额:$ 37.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-22 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AmplifiersBiologicalBiological SciencesBrainCellsChick EmbryoCulicidaeDNADevelopmentDevelopmental ProcessDrosophila genusEmbryoEngineeringExhibitsFormalinFundingGenesGenomeGoalsHeterogeneityHumanHuman DevelopmentImageIn SituIn Situ HybridizationLabelLengthMapsMessenger RNAMethodsMolecularMusMuscle FibersNanotechnologyNucleic Acid Regulatory SequencesNucleic AcidsOrganismParaffin EmbeddingPathologic ProcessesPatternPenetrationPerformancePlayPolymersPopulationPropertyRNARNA ProbesRNA SplicingReactionRegulatory ElementRelative (related person)ResearchResolutionRoleSamplingSignal TransductionSpecimenSpeedSystemTechnologyTimeTranscriptWhole OrganismZebrafishbasebioimagingcellular imagingcostdesignfluorophorehuman diseasehuman tissueimprovedinstrumentmRNA Expressionmicrobialnext generationprogramsresearch studyspatial relationshiptool
项目摘要
Project Summary
Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
Each cell in a multi-cellular organism contains the same genome, yet the regulatory circuits encoded within this
genome implement a developmental program yielding significant spatial heterogeneity and complexity. In situ
hybridization methods are an essential tool for elucidating developmental and pathological processes, enabling
imaging of mRNA expression in a morphological context from sub-cellular to organismal length scales. Due to
variability between specimens, accurate mapping of spatial relationships between the regulatory loci of different
genes requires multiplexed experiments in which multiple mRNAs are imaged in a single biological sample. With
current in situ hybridization approaches, it is challenging to simultaneously detect the expression of multiple target
mRNAs within intact vertebrate embryos. This shortcoming is a significant impediment to the study of interacting
regulatory elements in systems most relevant to human development and disease.
Here, we draw on concepts from the field of nucleic acid nanotechnology to design and validate in situ am-
plifiers based on the mechanism of hybridization chain reaction (HCR). Using this approach, RNA probes com-
plementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble
into tethered fluorescent amplification polymers. During the first funding period, we engineered orthogonal HCR
amplifiers that operate independently in the same sample at the same time. Robust performance was achieved
when imaging five target mRNAs simultaneously in fixed whole-mount and cross-sectioned zebrafish embryos.
Moreover, HCR amplifiers exhibited excellent sample penetration, high signal-to-background, and sharp signal
localization. During the second funding period, we will extend the core HCR in situ amplification technology to
pursue unprecedented quantitative imaging goals in vertebrate embryos, to diversify the classes of targets and
organisms for which the technology is validated and optimized, and to engineer next-generation HCR in situ
amplifiers with improved properties. Our major goals are:
Accurate and precise relative quantitation of mRNA abundance across whole-embryo images.
Sub-cellular imaging of single mRNA transcripts with quantitative yield in whole-mount zebrafish embryos.
Multiplexed mapping of miRNAs and alternatively spliced mRNAs with high signal-to-background in whole-
mount zebrafish embryos.
Generalizing HCR in situ amplification for use in diverse organisms.
Engineering next-generation HCR in situ amplifiers with dramatically improved gain, uniformity, speed, and
cost.
Realization of these goals would have a broad impact on research in the biological sciences, providing an un-
precedented combination of multiplexing, quantitation, sensitivity, and resolution for the study of interacting RNA
regulatory elements within intact vertebrate embryos and other diverse biological samples.
项目概要
杂交链式反应:生物成像的原位放大
多细胞生物体中的每个细胞都包含相同的基因组,但其中编码的调节电路
基因组执行一个发育程序,产生显着的空间异质性和复杂性。原位
杂交方法是阐明发育和病理过程的重要工具,使
从亚细胞到生物体长度尺度的形态学背景下 mRNA 表达的成像。由于
标本之间的变异性,准确绘制不同调控位点之间的空间关系
基因需要多重实验,其中多个 mRNA 在单个生物样品中成像。和
目前的原位杂交方法,同时检测多个靶标的表达具有挑战性
完整脊椎动物胚胎内的 mRNA。这一缺陷严重阻碍了交互作用的研究。
与人类发育和疾病最相关的系统中的调节元件。
在这里,我们借鉴核酸纳米技术领域的概念来设计和验证原位技术
基于杂交链式反应(HCR)机制的放大器。使用这种方法,RNA 探针可
与 mRNA 靶标互补,引发链式反应,其中荧光团标记的 RNA 发夹自组装
成系留荧光放大聚合物。在第一个资助期间,我们设计了正交 HCR
同时在同一样本中独立运行的放大器。实现了稳健的性能
当在固定的整体和横截面斑马鱼胚胎中同时对五个目标 mRNA 进行成像时。
此外,HCR 放大器表现出出色的样品穿透性、高信号背景比和尖锐的信号
本土化。在第二期资助期间,我们将把核心的HCR原位放大技术扩展到
追求脊椎动物胚胎中前所未有的定量成像目标,使目标类别多样化
对其技术进行验证和优化的生物体,并在原位设计下一代 HCR
具有改进性能的放大器。我们的主要目标是:
对整个胚胎图像中 mRNA 丰度进行准确且精确的相对定量。
对整装斑马鱼胚胎中单个 mRNA 转录物进行亚细胞成像,并具有定量产量。
整体上具有高信号背景的 miRNA 和选择性剪接 mRNA 的多重作图
安装斑马鱼胚胎。
推广 HCR 原位扩增以用于多种生物体。
设计下一代 HCR 原位放大器,显着提高增益、均匀性、速度和性能
成本。
这些目标的实现将对生物科学研究产生广泛的影响,为生物科学研究提供一个新的途径。
开创性地将多重分析、定量、灵敏度和分辨率相结合,用于研究相互作用的 RNA
完整脊椎动物胚胎和其他不同生物样本中的调控元件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NILES A PIERCE其他文献
NILES A PIERCE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NILES A PIERCE', 18)}}的其他基金
Engineering Triggered Nanomechanical Therapeutics
工程引发的纳米机械治疗
- 批准号:
8270640 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Engineering Triggered Nanomechanical Therapeutics
工程引发的纳米机械治疗
- 批准号:
7700301 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Engineering Triggered Nanomechanical Therapeutics
工程引发的纳米机械治疗
- 批准号:
8464655 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Engineering Triggered Nanomechanical Therapeutics
工程引发的纳米机械治疗
- 批准号:
8079739 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
杂交链式反应:生物成像的原位放大
- 批准号:
7255509 - 财政年份:2005
- 资助金额:
$ 37.12万 - 项目类别:
Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
杂交链式反应:生物成像的原位放大
- 批准号:
7125451 - 财政年份:2005
- 资助金额:
$ 37.12万 - 项目类别:
Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
杂交链式反应:生物成像的原位放大
- 批准号:
8239446 - 财政年份:2005
- 资助金额:
$ 37.12万 - 项目类别:
Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
杂交链式反应:生物成像的原位放大
- 批准号:
10449120 - 财政年份:2005
- 资助金额:
$ 37.12万 - 项目类别:
Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
杂交链式反应:生物成像的原位放大
- 批准号:
7448652 - 财政年份:2005
- 资助金额:
$ 37.12万 - 项目类别:
Hybridization Chain Reaction: In Situ Amplification for Biological Imaging
杂交链式反应:生物成像的原位放大
- 批准号:
10226792 - 财政年份:2005
- 资助金额:
$ 37.12万 - 项目类别:
相似海外基金
The concept for the evolutionary studies of the human mind and behaviors that are consistent with modern biological sciences
与现代生物科学相一致的人类思维和行为进化研究的概念
- 批准号:
23K00262 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Acquisition of a Glacios Cryo-TEM for the Biological Sciences Imaging Resource
采购 Glacios Cryo-TEM 用于生物科学成像资源
- 批准号:
10632855 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Becoming a Scientist: A Study of Identity Balance and the Persistence of Hispanic Undergraduate Students in Engineering and Biological Sciences
成为一名科学家:身份平衡与西班牙裔工程和生物科学本科生的坚持研究
- 批准号:
2334638 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Continuing Grant
Life and physical sciences interface: Topological underpinnings of data with application to biological sciences
生命与物理科学接口:数据的拓扑基础及其在生物科学中的应用
- 批准号:
BB/X004244/1 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
Research Grant
RaMP: Research and Mentoring for Postbaccalaureates in Biological Sciences at the University of Puerto Rico (RaMP-UP)
RaMP:波多黎各大学生物科学学士后研究和指导 (RaMP-UP)
- 批准号:
2216584 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
High performance mass spectrometry: applications for the Cambridge biological sciences community
高性能质谱:剑桥生物科学界的应用
- 批准号:
BB/W019620/1 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
Research Grant
Biological Sciences Program at The Gerontological Society of America's 2022 Annual Scientific Meeting
美国老年学会 2022 年科学年会生物科学项目
- 批准号:
10469163 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
MRI: Acquisition of a High-Resolution Mass Spectrometer for Research in Chemical Synthesis, Materials, and Biological Sciences
MRI:购买高分辨率质谱仪用于化学合成、材料和生物科学研究
- 批准号:
2215975 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Partnering with Rural and Low-income Students for Academic Success in the Biological Sciences
与农村和低收入学生合作,在生物科学领域取得学业成功
- 批准号:
2221637 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Pelagic fish and shark survivability in recreational fisheries - Biological Sciences PhD Studentship (NERC GW4+ DTP funded)
休闲渔业中的远洋鱼类和鲨鱼生存能力 - 生物科学博士生奖学金(NERC GW4 DTP 资助)
- 批准号:
2556480 - 财政年份:2021
- 资助金额:
$ 37.12万 - 项目类别:
Studentship














{{item.name}}会员




