High Magnetic Field, Time Domain Magnetic Resonance Spectrometers
高磁场、时域磁共振波谱仪
基本信息
- 批准号:8577601
- 负责人:
- 金额:$ 39.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:2,4-DinitrophenolAmplifiersAmyloid ProteinsDevelopmentElectromagneticsElectron Nuclear Double ResonanceElectron Spin Resonance SpectroscopyElectronsFrequenciesGoalsLeadMagicMagnetic ResonanceMagnetismMeasurementMembraneMembrane ProteinsMethodsMotivationNuclearNuclear Magnetic ResonanceOutputPatternPhasePhysiologic pulsePowder dose formProcessRadiationRelative (related person)ResearchResearch DesignResolutionRoleSamplingSignal TransductionSolidSourceSterile coveringsStructureSystemTechniquesTechnologyTimeTranslatingWorkbasebiological systemscold temperaturecostdesignimprovedinstrumentationmagnetic fieldmicrowave electromagnetic radiationmillimeternanosecondnoveloperationphotonicspublic health relevanceresearch studysimulation softwaresolid statetransmission process
项目摘要
DESCRIPTION (provided by applicant): The proposed research is focused on the development of two separate time domain magnetic resonance spectrometers: one at a frequency of 140 GHz (1H frequency of 212 MHz, magnetic field of 5T) and the second at a frequency of 250 GHz (1H frequency of 380 MHz, magnetic field of 9T). These spectrometers will be the world's first high power time domain spectrometers operating at frequencies above 100 GHz where modern magnetic resonance experimental research is conducted. The application will be in time domain dynamic nuclear polarization/nuclear magnetic resonance (DNP/NMR) and EPR research. Currently, the full implementation of time domain magnetic resonance techniques at high frequency is restricted by the paucity of high frequency microwave amplifiers. The advent of high frequency microwave amplifiers will permit the development of polarization transfer methods based on coherent processes the integrated solid effect, the dressed state solid effect, electron-nuclear Hartmann-Hahn cross polarization, etc. -- which are more favorable at high magnetic fields. Gyroamplifiers are essential for the implementation of these time domain experiments. Time domain EPR spectroscopy will also benefit greatly from this new instrumentation. The higher frequency can offer increased g-factor resolution for spectra consisting of overlapping powder patterns, the more precise measurements of the relative orientation of g-, hyperfine and dipolar tensors, and it will further simplify the acquisition and interpretation of pulsed ENDOR spectra. Accordingly, the first goal of this proposal is to integrate an existing 820W, 140 GHz gyroamplifier with an existing NMR and EPR spectrometer and to obtain first demonstrations of the spectrometer in high power DNP/NMR and EPR research. We will use a versatile low temperature spectrometer designed for the study of DNP/NMR at 212 MHz and EPR at 140 GHz. We have recently successfully operated this spectrometer using a low power (120 mW) source, but must develop and implement the components needed for its use with the high power gyroamplifier source. The second goal is to design and demonstrate improved resonators for DNP/NMR and EPR, such as photonic crystal resonators, and to develop the necessary ancillary THz components for the NMR application, such as switches, circulators, transmission lines, etc. for THz DNP/NMR and EPR experiments. Because of the scarcity and high cost of commercial instrumentation at high frequencies, it is crucial to develop these components to efficiently transmit and apply the available coherent radiation. The third specific aim is to complete the development of an existing 14 W, 250 GHz gyroamplifier and to apply that amplifier to pulsed DNP/NMR and EPR research. We first plan to finish the development of this amplifier at a power level of > 100 W using improved gyroamplifier designs in the first year of the proposal. Once the 250 GHz gyroamplifier is fully developed, we will apply it to pulsed DNP/NMR and EPR. The resultant system will then be the highest frequency high power DNP/NMR and EPR spectrometer in the world.
说明(申请人提供):拟议的研究集中于开发两个独立的时间域磁共振光谱仪:一个频率为140 GHz(1H频率212 MHz,磁场为5T),第二个频率为250 GHz(1H频率380 MHz,磁场9T)。这些光谱仪将是世界上第一台工作在100 GHz以上频率的高功率时域光谱仪,现代磁共振实验研究就是在这里进行的。这将应用于动态核极化/核磁共振(DNP/核磁共振)和电子顺磁共振的研究。目前,由于高频微波放大器的匮乏,限制了高频下时间域磁共振技术的全面实施。高频微波放大器的出现将使基于相干过程的偏振传输方法的发展成为可能--积分固体效应、装饰态固体效应、电子-核哈特曼-哈恩交叉极化等--这些方法在强磁场下更有利。陀螺放大器对于这些时域实验的实施是必不可少的。时间域电子顺磁共振波谱也将从这一新仪器中受益匪浅。更高的频率可以提供更高的g因子分辨率,包括重叠粉末图案的光谱,更精确地测量g-张量、超精细张量和偶极张量的相对取向,并将进一步简化脉冲Endor谱的获取和解释。因此,这项提议的第一个目标是将现有的820W、140 GHz陀螺放大器与现有的核磁共振和电子顺磁共振光谱仪集成在一起,并在高功率DNP/核磁共振和电子顺磁共振研究中获得该光谱仪的首次演示。我们将使用一台通用的低温光谱仪,用于研究212 MHz的DNP/NMR和140 GHz的EPR。我们最近成功地使用了低功率(120 MW)光源操作该光谱仪,但必须开发和实施与高功率陀螺放大源配合使用所需的组件。第二个目标是设计和展示用于DNP/核磁共振和EPR的改进的谐振器,如光子晶体谐振器,并开发用于核磁共振应用的必要的辅助THz元件,如用于THz DNP/核磁共振和EPR实验的开关、环行器、传输线等。由于高频商用仪器的稀缺性和高成本,开发这些组件以有效地传输和应用可用的相干辐射是至关重要的。第三个具体目标是完成现有的14W、250 GHz陀螺放大器的开发,并将该放大器应用于脉冲DNP/核磁共振和EPR研究。我们首先计划在提案的第一年使用改进的陀螺放大器设计完成该放大器的开发,功率水平为>;100 W。一旦250 GHz陀螺放大器完全研制成功,我们将把它应用于脉冲DNP/核磁共振和电子顺磁共振。合成的系统将成为世界上频率最高的高功率DNP/核磁共振和EPR光谱仪。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD J TEMKIN其他文献
RICHARD J TEMKIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD J TEMKIN', 18)}}的其他基金
Novel Traveling Wave Tubes for CW and Pulsed DNP NMR
用于 CW 和脉冲 DNP NMR 的新型行波管
- 批准号:
9296139 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Novel Traveling Wave Tubes for CW and Pulsed DNP NMR
用于 CW 和脉冲 DNP NMR 的新型行波管
- 批准号:
9069845 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Innovative Instrumentation for High Magnetic Field DNP NMR
高磁场 DNP NMR 创新仪器
- 批准号:
10548884 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Tunable 330 GHz Gyrotron for DNP/NMR
用于 DNP/NMR 的可调谐 330 GHz 回旋管
- 批准号:
7317365 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Innovative Instrumentation for High Magnetic Field DNP NMR
高磁场 DNP NMR 创新仪器
- 批准号:
10116818 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Innovative Instrumentation for High Magnetic Field DNP NMR
高磁场 DNP NMR 创新仪器
- 批准号:
10393501 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Tunable 330 GHz Gyrotron for DNP/NMR
用于 DNP/NMR 的可调谐 330 GHz 回旋管
- 批准号:
7042235 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Tunable 330 GHz Gyrotron for DNP/NMR
用于 DNP/NMR 的可调谐 330 GHz 回旋管
- 批准号:
7178519 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
Tunable 330 GHz Gyrotron for DNP/NMR
用于 DNP/NMR 的可调谐 330 GHz 回旋管
- 批准号:
7534949 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
High Frequency Gyrotron for DNP/NMR Research.
用于 DNP/NMR 研究的高频回旋管。
- 批准号:
8130657 - 财政年份:2006
- 资助金额:
$ 39.92万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Collaborative R&D