Analyzing Next-Generation Sequencing Data
分析下一代测序数据
基本信息
- 批准号:8551251
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-23 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelotypingAreaAutomationBioinformaticsBiologicalBiologyBiomedical ResearchChIP-seqCollaborationsComputer softwareDNA ResequencingDataData AnalysesData SetEducational process of instructingEducational workshopEvaluationExperimental DesignsFundingFutureGenomeGenomicsGoalsGraphIndividualInstitutionInternetLearningMapsMemoryMessenger RNAOperating SystemParticipantPaste substanceProceduresProgrammed LearningPublicationsReadingRecipeResearchResearch PersonnelResourcesRunningSamplingScientistSequence AnalysisStudentsSystemTechniquesTechnologyThinkingTrainingWorkbasecomputerized toolscomputing resourcescostdata miningdata reductiondesignexperiencegenome sequencingnext generationnext generation sequencingnovelprogramspublic health relevanceresearch studyskillsstatisticstooltranscriptome sequencingtranscriptomicsweb services
项目摘要
DESCRIPTION (provided by applicant): Modern biomedical research is increasingly making use of genome-scale data from next-generation sequencing platforms, including Illumina HiSeq and MiSeq machines and Pacific Biosciences SMRT. These platforms make it possible for individual labs to quickly and cheaply generate vast amounts of genomic and transcriptomic data from de novo sequencing, resequencing, ChIP-seq, mRNA-seq, and allelotyping experiments. Despite this ability to quickly generate large data sets, biologists are rarely traine in the computational and statistical techniques necessary to make sense of this data. Thus, many researchers must rely on others - often computational scientists with little biological training - to design and implement appropriate data reduction and data mining techniques. Moreover, most institutions do not have access to the substantial computational resources necessary to run these analyses. We will continue to help bridge this gap with a short, two-week intensive summer course, by teaching biomedical researchers to (1) run analyses on remote UNIX servers hosted in the Amazon Web Services "cloud"; (2) perform mapping and assembly on large short-read data sets; (3) tackle specific biological problems with existing short-read data; and (4) design computational pipelines capable of addressing their own research questions. This will be accomplished by in-depth hands- on practical training in the relevant techniques. Our experience, confirmed by assessment, is that this practical training leads to a substantial improvement in the basic computational sophistication of participants. We believe that in the long term our cadre and those of other courses will contribute to a significant improvement in the general area of data-driven biology. This short course will continue to help train the current and next generation of independent biomedical researchers in basic computational thinking and procedure, as well as teaching them how to make use of scalable Internet computing resources for their own research. Moreover, we will continue to develop and extend our extensive online materials, which are freely available online and widely used. Our end goal is increase the efficiency and sophistication with which biomedical researchers make use of novel sequencing technologies. For this renewal, we propose to continue offering the course at a low cost; expand our RNAseq discussion; address student needs by expanding the available materials for learning programming and UNIX; and increase our statistics component significantly.
现代生物医学研究越来越多地利用来自下一代测序平台的基因组规模数据,包括Illumina HiSeq和MiSeq机器以及Pacific Biosciences SMRT。这些平台使各个实验室能够快速、廉价地从从头测序、重测序、ChIP-seq、mRNA-seq和等位基因分型实验中生成大量的基因组和转录组数据。尽管生物学家有能力快速生成大型数据集,但他们很少接受过必要的计算和统计技术培训,以理解这些数据。因此,许多研究人员必须依靠其他人-通常是几乎没有生物学训练的计算科学家-来设计和实施适当的数据简化和数据挖掘技术。此外,大多数机构无法获得运行这些分析所需的大量计算资源。我们将继续通过为期两周的短期暑期强化课程来帮助弥合这一差距,通过教授生物医学研究人员(1)在托管在亚马逊网络服务“云”上的远程UNIX服务器上运行分析;(2)对大型短读数据集进行映射和组装;(3)利用现有的短读数据解决特定的生物学问题;(4)利用现有的短读数据解决特定的生物学问题。以及(4)设计能够解决他们自己的研究问题的计算管道。这将通过相关技术的深入实践培训来实现。我们的经验,通过评估证实,是这种实际的培训导致参与者的基本计算复杂性的实质性改善。我们相信,从长远来看,我们的干部和其他课程将有助于在数据驱动生物学的一般领域的显着改善。这个短期课程将继续帮助培训当前和下一代独立的生物医学研究人员在基本的计算思维和程序,以及教他们如何利用可扩展的互联网计算资源为自己的研究。此外,我们将继续开发和扩展我们广泛的在线材料,这些材料可以在网上免费获得并广泛使用。我们的最终目标是提高生物医学研究人员利用新型测序技术的效率和复杂性。对于这次更新,我们建议继续以低成本提供课程;扩大我们的RNAseq讨论;通过扩大学习编程和UNIX的可用材料来满足学生的需求;并显着增加我们的统计部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. Titus BROWN其他文献
C. Titus BROWN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. Titus BROWN', 18)}}的其他基金
Tools and Workflows for Mining Genomic Data on Many Clouds
用于在许多云上挖掘基因组数据的工具和工作流程
- 批准号:
9559842 - 财政年份:2017
- 资助金额:
$ 5.4万 - 项目类别:
BIGDATA: Low-Memory Streaming Prefilters for Biological Sequencing Data
BIGDATA:生物测序数据的低内存流预过滤器
- 批准号:
8703739 - 财政年份:2013
- 资助金额:
$ 5.4万 - 项目类别:
BIGDATA: Low-Memory Streaming Prefilters for Biological Sequencing Data
BIGDATA:生物测序数据的低内存流预过滤器
- 批准号:
8599821 - 财政年份:2013
- 资助金额:
$ 5.4万 - 项目类别:
相似海外基金
表在性膀胱癌における全Genome領域のAllelotypingとホモ欠失の解析
浅表性膀胱癌全基因组区域的等位基因分型及纯合缺失分析
- 批准号:
18791133 - 财政年份:2006
- 资助金额:
$ 5.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Locating Novel Paget's Loci by Tumor Allelotyping
通过肿瘤等位基因定位Novel Paget的基因座
- 批准号:
6632777 - 财政年份:2001
- 资助金额:
$ 5.4万 - 项目类别:
Locating Novel Paget's Loci by Tumor Allelotyping
通过肿瘤等位基因定位Novel Paget的基因座
- 批准号:
6512202 - 财政年份:2001
- 资助金额:
$ 5.4万 - 项目类别:
Locating Novel Paget's Loci by Tumor Allelotyping
通过肿瘤等位基因定位Novel Paget的基因座
- 批准号:
6324240 - 财政年份:2001
- 资助金额:
$ 5.4万 - 项目类别:
Locating Novel Paget's Loci by Tumor Allelotyping
通过肿瘤等位基因定位Novel Paget的基因座
- 批准号:
6719009 - 财政年份:2001
- 资助金额:
$ 5.4万 - 项目类别: