Functional and translational studies of RUNX1 and CBFB in hematopoiesis

RUNX1和CBFB在造血中的功能和转化研究

基本信息

项目摘要

We have been pursuing two specific aims in this project in the last fiscal year. They are: specific aim 1, Determining the roles of CBFB in HSC formation in zebrafish; and specific aim 2, Studying familial platelet disorder and studying the role of RUNX1 in this disease using human iPSCs. CBFβ and RUNX1 form a DNA-binding heterodimer and they are both required for definitive hematopoiesis at the stage of hematopoietic stem cells (HSCs). However, the exact role of CBFβ in the development of HSCs remains unclear. To dissect the role of CBFβ in the emergence and maintenance of HSCs we generated two zebrafish cbfb null mutants using zinc finger nuclease (ZFN) technology. Similar to our published runx1 mutant embryos, cbfb-/- embryos underwent primitive hematopoiesis, but lacked definitive hematopoiesis. Unlike the runx1 mutants, however, the emergence of HSCs in the AGM was unaffected in cbfb-/- embryos. Rather, the subsequent mobilization of the HSCs from AGM was blocked, as evidenced by the accumulation of runx1+ HSCs in the AGM and the concomitant absence of such cells in the caudal hematopoietic tissue (CHT). We found that cbfb was downstream of the Notch pathway during HSC development, since cbfb expression was expanded in Notch transgenic embryos but abrogated in the Notch-deficient mind bomb mutants. Moreover, embryos treated with Ro5-3335, the inhibitor of RUNX1-CBFβ interaction, phenocopied the hematopoietic defects in the cbfb-/- mutants. Overall our data suggest that CBFβ and functional CBFβ-RUNX1 heterodimers are not required for the emergence of HSCs but are essential for the mobilization of HSCs during early definitive hematopoiesis. (Bresciani et al., Manuscript submitted) Heterozygous germline mutations in RUNX1 lead to familial platelet disorder (FPD), which is one of the first known haploinsufficiency diseases. Patients with this disorder have defective megakaryocytic development, low platelet counts, prolonged bleeding times, frequent bruises, and a high frequency (>35%) of developing AML at some point in their lifetime. The clinical manifestations of the disease underscore the critical role of RUNX1 in megakaryocyte differentiation and platelet function, in addition to its role in early hematopoiesis. Since it is the only known inherited disease caused by RUNX1 mutations, FPD is a good model to study RUNX1 function in human hematopoiesis. In addition, we hope our studies will eventually lead to better management of the FPD patients, especially in the form of cell therapy, which is potentially curative of the disease. Moreover, the approaches and reagents developed in this aim can be applicable to cell-based therapies of many other hematological diseases. Importantly, no animal models are available for FPD: Runx1 heterozygous knockout animals (both mouse and zebrafish) have no defects in megakaryocytic development and they do not develop leukemia. The induced pluripotent stem cell (iPSC) technology is one of the most important advances in biology and medicine in the first decade of the 21st century. The iPSCs have the potential to differentiate into any cell type of the human body, so they can be used to model many human diseases. Since no suitable animal models are available to study FPD, the hematopoietic defects in FPD can potentially be replicated or modeled in cell culture. We have established iPSC lines from skin fibroblasts of 2 FPD patients harboring a Y260X mutation in the RUNX1 gene. We demonstrate, in vitro, that the FPD iPSCs display defects in hematopoietic differentiation, particularly towards megakaryopoiesis. We then performed zinc finger nuclease (ZFN) mediated gene targeting to correct the mutation in one of the FPD iPSC lines. We could demonstrate that ZFN-mediated mutation correction rescued the FPD phenotype with increased number of CD41+CD42+ megakaryocytes. Our innovative approach to model FPD using iPSC lines with an ability to correct the mutation by gene targeting provide a unique tool to perform translational studies of FPD. We will perform molecular characterizations to understand the mechanisms through which RUNX1 regulates megakaryopoiesis and the underlying defects in the FPD iPSCs. (Kwon et al., Manuscript in preparation)
在上一个财政年度,我们一直在这个项目中追求两个具体目标。它们是:具体目标1,确定CBFB在斑马鱼HSC形成中的作用;2、利用人iPSCs研究家族性血小板疾病及RUNX1在该疾病中的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Liu其他文献

Paul Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Liu', 18)}}的其他基金

ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
  • 批准号:
    8360042
  • 财政年份:
    2011
  • 资助金额:
    $ 50.69万
  • 项目类别:
ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
  • 批准号:
    8167644
  • 财政年份:
    2010
  • 资助金额:
    $ 50.69万
  • 项目类别:
ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
  • 批准号:
    7959652
  • 财政年份:
    2009
  • 资助金额:
    $ 50.69万
  • 项目类别:
Mechanistic and translational studies of CBF leukemia
CBF白血病的机制和转化研究
  • 批准号:
    9152701
  • 财政年份:
  • 资助金额:
    $ 50.69万
  • 项目类别:
MOLECULAR PATHOGENESIS OF CHROMOSOME 16 INVERSION IN HUMAN LEUKEMIA
人类白血病 16 号染色体倒转的分子发病机制
  • 批准号:
    8349971
  • 财政年份:
  • 资助金额:
    $ 50.69万
  • 项目类别:
Genetic Analysis of Attention Deficit Hyperactivity Disorder
注意力缺陷多动障碍的遗传分析
  • 批准号:
    10274163
  • 财政年份:
  • 资助金额:
    $ 50.69万
  • 项目类别:
GENETIC ANALYSIS OF ZEBRAFISH EMBRYO DEVELOPMENT
斑马鱼胚胎发育的遗传分析
  • 批准号:
    8349976
  • 财政年份:
  • 资助金额:
    $ 50.69万
  • 项目类别:
MOLECULAR PATHOGENESIS OF CHROMOSOME 16 INVERSION IN HUMAN LEUKEMIA
人类白血病 16 号染色体倒转的分子发病机制
  • 批准号:
    8565516
  • 财政年份:
  • 资助金额:
    $ 50.69万
  • 项目类别:
Clinical and translational studies of RUNX1 and FPDMM
RUNX1 和 FPDMM 的临床和转化研究
  • 批准号:
    10700696
  • 财政年份:
  • 资助金额:
    $ 50.69万
  • 项目类别:
Clinical and translational studies of RUNX1 and FPDMM
RUNX1 和 FPDMM 的临床和转化研究
  • 批准号:
    10910743
  • 财政年份:
  • 资助金额:
    $ 50.69万
  • 项目类别:

相似海外基金

Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
  • 批准号:
    23K14138
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
  • 批准号:
    571519-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
  • 批准号:
    2735213
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
  • 批准号:
    2209217
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
  • 批准号:
    2242530
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
  • 批准号:
    RGPIN-2021-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
  • 批准号:
    RGPIN-2019-07002
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
  • 批准号:
    BB/V01577X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
  • 批准号:
    2010698
  • 财政年份:
    2021
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
  • 批准号:
    RGPIN-2019-07002
  • 财政年份:
    2021
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了