ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
基本信息
- 批准号:8360042
- 负责人:
- 金额:$ 24.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptive TransferAmericanAnatomyBiologyBlood VesselsBody partBuild-itCellsCessation of lifeChairpersonDevicesDoseFGF2 geneFundingGene SilencingGene TransferGenesGrantHemoglobinHospitalsIschemiaLengthLiposomesLocationMeasuresMediatingMentorsMethodsMissionModelingNational Center for Research ResourcesOperative Surgical ProceduresPerfusionPlasmidsPlastic SurgeonPlatelet-Derived Growth FactorPopulationPrincipal InvestigatorProteinsPublishingReconstructive Surgical ProceduresResearchResearch InfrastructureResourcesSkinSmall Interfering RNASocietiesSourceStem cellsSurgical FlapsTechniquesTechnologyTestingTimeTissue EngineeringTissue SurvivalTissue ViabilityTissuesTrainingTransgenesUnited States National Institutes of HealthUniversitiesVascular Endothelial Growth FactorsVascular blood supplyViralWorkWound Healingadeno-associated viral vectorclinically relevantcostdesigngene therapyimprovedinjury and repairnovelnovel strategiesstatisticswound
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
There has been no change in the scope of this project.
This project will develop a novel application for a recent technique within gene therapy in the field of reconstructive surgery. We propose to use adeno-associated viral vectors designed to cause infected cells to elaborate potent blood supply-building proteins, namely VEGF, PDGF, and FGF2. This enhanced vascular network appears to rescue ischemic tissue from death, allowing "flaps" (tissue transferred from one anatomic location to another for the purpose of closing a wound or reconstructing parts of the body) to be constructed of longer length, greater size, or greater reliability. Statistics compiled by the American Society of Plastic Surgeons (www.plasticsurgery.org) tracked over 5.2 million reconstructive surgeries in the US last year alone. In addition, this project is germane to the overall mission of bettering wound healing, and may be applicable to any situation of tissue ischemia.
It builds upon earlier, published work of the applicant (P Liu), who, though currently Chairman of Surgery at Roger Williams Hospital, Providence, RI, has never been the recipient of competitive Federal funding except a T32 training grant. It is not mentored, but will rely on the critical input from collaborators at Brown University and Roger Williams skilled in those techniques new to the applicant. The specific hypothesis tested is: Engineering tissue with AAV-delivered angiogenic genes can improve survival of ischemic flaps derived from that tissue via recruitment of endothelial progenitor cells. In addition to testing the effects of each of the transgenes, our approach will take advantage of the greater efficiency of viral-mediated gene transfer to assess the combination of VEGF + FGF2, which, when delivered via liposome in plasmid form, was more effective than single gene therapy delivered the same way. We propose the following specific aims:
1). Maximize tissue survival in a flap model by optimizing the timing and dosing of angiogenic gene transfers using AAV vectors, and assess the effects of combining VEGF and FGF2 gene therapy.
2). Develop a mechanism of action to account for enhanced tissue survival.
We expect the approach to be both efficacious and clinically relevant. Addressing Aim 2 will help answer a controversial issue in vascular biology, namely, where does the new blood supply in injury repair come from? We will utilize siRNA methods of gene silencing to help get at that answer, as well as localization technology (IVIS) and adoptive transfer of endothelial progenitor cell-enriched populations into the ischemic tissue. Lastly, a new portable spectroscopic device, the ViOptix probe, measuring spectral shifts in the near infrared spectrum of oxygenated hemoglobin as a function of perfusion, will help determine real time tissue viability.
这个子项目是利用资源的许多研究子项目之一。
由NIH/NCRR资助的中心拨款提供。对子项目的主要支持
子项目的首席调查员可能是由其他来源提供的,
包括美国国立卫生研究院的其他来源。为子项目列出的总成本可能
表示该子项目使用的中心基础设施的估计数量,
不是由NCRR赠款提供给次级项目或次级项目工作人员的直接资金。
这个项目的范围没有变化。
该项目将为基因治疗中的一项最新技术在重建外科领域开发一种新的应用。我们建议使用腺相关病毒载体,旨在使感染细胞精心设计强大的血液供应建立蛋白,即血管内皮生长因子、PDGF和FGF2。这种增强的血管网络似乎将缺血组织从死亡中拯救出来,允许构建更长、更大或更可靠的“皮瓣”(组织从一个解剖位置转移到另一个解剖位置,目的是闭合伤口或重建身体部分)。美国整形外科学会(www.PlatticSurgeery.org)编制的统计数据显示,仅去年一年,美国就有超过520万例整形手术。此外,该项目与改善伤口愈合的总体使命密切相关,可能适用于任何组织缺血的情况。
它建立在申请人(P刘)早先发表的工作的基础上,尽管他目前是罗杰威廉姆斯医院普罗维登斯的外科主席,但除了T32培训拨款外,从未接受过竞争性联邦资金。它没有得到指导,但将依赖于布朗大学的合作者和罗杰·威廉姆斯的关键意见,这些合作者精通那些对申请者来说是新的技术。验证的具体假设是:携带AAV基因的工程组织可以通过内皮祖细胞的募集来提高源自该组织的缺血皮瓣的存活率。除了测试每一种转基因的效果外,我们的方法还将利用病毒介导的基因转移的更高效率来评估VEGF+FGF2的组合,当通过脂质体以质粒形式传递时,它比以同样方式传递的单基因治疗更有效。我们提出了以下具体目标:
1)。通过使用AAV载体优化血管生成基因转移的时机和剂量,最大限度地提高皮瓣模型中的组织存活率,并评估联合使用VEGF和FGF2基因治疗的效果。
2)。开发一种作用机制来解释提高组织存活率的原因。
我们希望这种方法既有效又具有临床意义。解决目标2将有助于回答血管生物学中一个有争议的问题,即损伤修复中的新血液供应来自哪里?我们将利用siRNA的基因沉默方法,以及定位技术(IVIS)和将内皮祖细胞丰富的群体过继转移到缺血组织中来帮助找到答案。最后,一种新的便携式光谱设备ViOptix探头将有助于确定组织的实时生存能力。ViOptix探头测量含氧血红蛋白的近红外光谱随灌流的变化而发生的光谱位移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Liu其他文献
Paul Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Liu', 18)}}的其他基金
ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
- 批准号:
8167644 - 财政年份:2010
- 资助金额:
$ 24.18万 - 项目类别:
ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
- 批准号:
7959652 - 财政年份:2009
- 资助金额:
$ 24.18万 - 项目类别:
Functional and translational studies of RUNX1 and CBFB in hematopoiesis
RUNX1和CBFB在造血中的功能和转化研究
- 批准号:
8750660 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
Mechanistic and translational studies of CBF leukemia
CBF白血病的机制和转化研究
- 批准号:
9152701 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
MOLECULAR PATHOGENESIS OF CHROMOSOME 16 INVERSION IN HUMAN LEUKEMIA
人类白血病 16 号染色体倒转的分子发病机制
- 批准号:
8349971 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
Genetic Analysis of Attention Deficit Hyperactivity Disorder
注意力缺陷多动障碍的遗传分析
- 批准号:
10274163 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
MOLECULAR PATHOGENESIS OF CHROMOSOME 16 INVERSION IN HUMAN LEUKEMIA
人类白血病 16 号染色体倒转的分子发病机制
- 批准号:
8565516 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
Clinical and translational studies of RUNX1 and FPDMM
RUNX1 和 FPDMM 的临床和转化研究
- 批准号:
10700696 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
Clinical and translational studies of RUNX1 and FPDMM
RUNX1 和 FPDMM 的临床和转化研究
- 批准号:
10910743 - 财政年份:
- 资助金额:
$ 24.18万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Research Grant