Roles of the mammalian CST complex in DNA replication and chromosome cohesion
哺乳动物 CST 复合体在 DNA 复制和染色体凝聚中的作用
基本信息
- 批准号:8425980
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-06 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgreementAnaphaseAneuploidyAwardBindingBinding ProteinsBinding SitesBiochemicalBiological AssayCell Cycle ArrestCell LineCell physiologyCellsCellular biologyChromosomal InstabilityChromosome BreakageChromosome CohesionChromosome DeletionChromosome Fragile SitesChromosome SegregationChromosomesComplexDNADNA DamageDNA PrimaseDNA Replication FactorDNA SequenceDNA biosynthesisDNA lesionDNA polymerase alpha-primaseDNA-Binding ProteinsDefectDiseaseEducational process of instructingEnsureEventFiberGene DuplicationGene MutationGenetic TranscriptionGenomeGenomic InstabilityGenomicsGoalsHeadHereditary DiseaseHumanHuman GenomeK-Series Research Career ProgramsKnowledgeLaboratoriesLeadLearningLifeLinkMalignant NeoplasmsMass Spectrum AnalysisMeasuresMemorial Sloan-Kettering Cancer CenterMentorsMentorshipMetaphaseMethodsMitosisMitoticMolecularMutationNorth CarolinaPeptidesPhasePhenotypePlayPolymerasePreventionPriceProcessProtein AnalysisProtein BindingProtein DynamicsProteinsProtocols documentationPublic HealthRNAResearchResearch ProposalsRoleS PhaseSisterSister ChromatidSiteSpecificityTechniquesTelomere MaintenanceTimeTrainingTrinucleotide RepeatsUniversitiesWorkbasecancer geneticscancer initiationcareer developmentcellular imagingcohesincohesiondaughter cellexperiencefusion genehuman diseaseinnovationinsightmembernovelpreventprotein functionpublic health relevancerepairedreplication factor Aresearch studyresponsetelomere
项目摘要
DESCRIPTION (provided by applicant): There is a fundamental gap in our current understanding of how DNA replication proceeds through naturally occurring barriers and how sister chromatid cohesion (SCC) is established during DNA replication. During replication of the genome, the replisome complexes encounter a variety of barriers. These include unnatural and natural impediments. Unnatural impediments include DNA lesions and double-strand breaks. Natural impediments include repetitive DNA, DNA-bound proteins and sites of RNA transcription. Based on the size of the human genome, replisome complexes are predicted to stall many times at natural impediments throughout the course of S-phase. Since these natural impediments do not require repair, the cell has evolved mechanisms to prevent these impediments from causing a DNA damage response and cell cycle arrest. However, how this occurs remains poorly understood. The long-term goal of this project is to elucidate how DNA replication proceeds through natural chromosome barriers, such as repetitive DNA sequences and DNA-bound proteins. The objective of this career development award is two-fold: 1) complete the specific aims of the research proposal, which are to determine the non-telomere roles of the CTC1-STN1-TEN1 (CST) complex in DNA replication and SCC, and 2) receive career development through learning new techniques, developing an independent project, gaining teaching experience and receiving guided mentoring in the K99 phase of this award. The K99 phase will occur under the mentorship and guidance of Dr. Carolyn Price at the University of Cincinnati with additional support from Drs. Paul Chastain, David Kaufman, Prasad Jallepalli and Dr. Birgit Ehmer. Natural impediments in our genome that stall replication include difficult-to-replicate DNA regions such as telomeres, fragile sites, trinucleotide repeats and centromeric DNA. At these regions, the replisome must be restarted after stalling. However, how DNA synthesis is reinitiated at these sites remains poorly characterized. SCC is established during DNA replication and proposed to occur concurrent with passage of the replisome. Surprisingly, my preliminary findings suggest that the newly discovered, telomere-associated CST complex not only functions at the telomere but also in both DNA replication restart and SCC. Interestingly, depletion of several other DNA replication proteins leads to defects in SCC and DNA replication restart, suggesting a link between these two processes. Two components of CST, CTC1 and STN1, were originally identified as DNA polymerase alpha- primase (pol alpha) accessory factors, which stimulate pol alpha binding and primase activities. CST also binds ssDNA and is structurally similar to the replication/repair factor replication protein A (RPA). Together, these findings suggest that CST interactions with pol alpha are important for its non-telomere functions. The central hypothesis of this proposal is that CST prevents genome instability by promoting rapid replication restart and SCC at sites of difficult-to
replicate DNA, such as telomeres and fragile sites. The proposed research will address this hypothesis through three specific aims: 1) To determine the mechanism by which CST facilitates replication restart after fork stalling; 2) To elucidate the role of CST in sister chroatid cohesion and mitotic progression; 3) To identify CST interactions with replication restart and sister chromatid cohesion factors. In the first aim, the role of CST in replication restart will be
investigated by analyzing restart at both the cellular and molecular level in CST-depleted cell lines, determining whether CST is localized to sites of fork stalling, analyzing replication fork stalling in CST-depleted cell lines at sites of difficult-to-replicate DNA and characterizing CST ssDNA binding activity. To perform these experiments, I will receive training in DNA fiber analysis from Dr. Paul Chastain at the University of North Carolina, employ a new protocol for isolating DNA at stalled replication forks and utilize my biochemical and cell biology training. In
the second aim, the role of CST in SCC will be assessed by first determining the timing of cohesion loss and whether defects in mitotic progression arise from SCC loss in CST-depleted cells. These studies will require me to learn live-cell imaging and new cell biology techniques. For these studies, I will be collaborating with Dr. Prasad Jallepalli, associate member and laboratory head at the Memorial Sloan-Kettering Cancer Center and an expert in chromosome cohesion and mitosis. The third aim will use a multi-pronged approach to determine CST interacting partners. These studies will include hypothesis-driven experiments to identify CST interactions with proteins involved in DNA replication restart and SCC. CST pull-down followed by mass spectrometry will be used as an unbiased approach to gain insight into CST function through the identification of novel interacting peptides. This proposed work is innovative because: 1) it addresses the unexpected non-telomere functions of CST; 2) it investigates novel mechanisms for the reinitiation of DNA synthesis after fork stalling at natural impediments; 3) it combines a variety of new and well-established techniques to investigate the central hypothesis. The work is significant because it will reveal some of the underlying mechanisms of chromosome instability. Each time a cell divides its DNA must be properly replicated and SCC maintained to ensure proper chromosome segregation to the daughter cells. Defects in either DNA replication or chromosome cohesion lead to phenotypes associated with cancer initiation, such as translocations, deletions, chromosome fusions, gene duplication and aneuploidy. Several genetic disorders, termed cohesionopathies, are also associated with SCC loss and chromosome breakage. Furthermore, mutations in CTC1 were recently shown to underlie a rare autosomal recessive disorder, Coats plus. The completion of these studies will advance our understanding of these cellular processes and provide new targets for prevention and treatment of these diseases.
描述(由申请人提供):我们目前对DNA复制如何通过自然发生的屏障进行以及姐妹染色单体内聚(SCC)如何在DNA复制过程中建立的理解存在根本差距。在基因组的复制过程中,复制体复合物会遇到各种各样的障碍。这些障碍包括非自然障碍和自然障碍。非自然障碍包括DNA损伤和双链断裂。天然障碍包括重复DNA、DNA结合蛋白和RNA转录位点。根据人类基因组的大小,预计在整个s期过程中,复制体复合体会在自然障碍中多次停滞。由于这些天然障碍不需要修复,细胞已经进化出机制来防止这些障碍引起DNA损伤反应和细胞周期停滞。然而,这是如何发生的仍然知之甚少。该项目的长期目标是阐明DNA复制如何通过自然染色体屏障进行,例如重复DNA序列和DNA结合蛋白。该职业发展奖的目标有两个方面:1)完成研究计划的具体目标,即确定CTC1-STN1-TEN1 (CST)复合物在DNA复制和SCC中的非端粒作用;2)在该奖项的K99阶段,通过学习新技术、开发独立项目、获得教学经验和接受指导指导来获得职业发展。K99阶段将在辛辛那提大学的Carolyn Price博士的指导和指导下进行,并得到dr。Paul Chastain, David Kaufman, Prasad Jallepalli和Birgit Ehmer博士。我们基因组中阻碍复制的天然障碍包括难以复制的DNA区域,如端粒、脆弱位点、三核苷酸重复和着丝粒DNA。在这些区域,复制体必须在停止后重新启动。然而,DNA合成是如何在这些位点重新启动的,仍然没有得到很好的描述。SCC是在DNA复制过程中建立的,并被认为与复制体的传代同时发生。令人惊讶的是,我的初步研究结果表明,新发现的端粒相关CST复合物不仅在端粒上起作用,而且在DNA复制重启和SCC中都起作用。有趣的是,其他几种DNA复制蛋白的消耗导致SCC缺陷和DNA复制重启,这表明这两个过程之间存在联系。CST的两个组分CTC1和STN1最初被鉴定为DNA聚合酶α -引物酶(pol α)辅助因子,刺激pol α结合和引物酶活性。CST还能结合ssDNA,其结构类似于复制/修复因子复制蛋白A (RPA)。总之,这些发现表明CST与pol α的相互作用对其非端粒功能很重要。该建议的中心假设是,CST通过促进快速复制重启和难以到达的位点的SCC来防止基因组不稳定
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Aaron Stewart其他文献
Jason Aaron Stewart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Aaron Stewart', 18)}}的其他基金
Roles of the mammalian CST complex in DNA replication and chromosome cohesion
哺乳动物 CST 复合体在 DNA 复制和染色体凝聚中的作用
- 批准号:
8920616 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Roles of the mammalian CST complex in DNA replication and chromosome cohesion
哺乳动物 CST 复合体在 DNA 复制和染色体凝聚中的作用
- 批准号:
9134830 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Roles of the mammalian CST complex in DNA replication and chromosome cohesion
哺乳动物 CST 复合体在 DNA 复制和染色体凝聚中的作用
- 批准号:
8896187 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Roles of CST, a novel telomere associated complex, at the DNA replication fork
CST(一种新型端粒相关复合物)在 DNA 复制叉中的作用
- 批准号:
8123664 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Roles of CST, a novel telomere associated complex, at the DNA replication fork
CST(一种新型端粒相关复合物)在 DNA 复制叉中的作用
- 批准号:
8386080 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




