How Do Amine Neurons Work - Diversity Supplement
胺神经元如何工作 - 多样性补充
基本信息
- 批准号:8551266
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAggressive behaviorAminesAnimalsAreaArousalAttention deficit hyperactivity disorderBehaviorBehavioralBiological ModelsBrainBrain StemCell NucleusComplexCourtshipDatabasesDiseaseDopamineDrosophila genusDrosophila melanogasterDrug AddictionDrug abuseEnhancersFunctional disorderGenerationsGeneticGreen Fluorescent ProteinsHumanLearningLibrariesLifeLiteratureLocomotionMembraneMemoryMental disordersMethodsMood DisordersMorphologyMotivationMotorNervous system structureNeuronsNorepinephrineNuclearParkinson DiseasePathologyPatternPhysiologicalPlayPopulationPopulation HeterogeneityProceduresProcessPropertyRewardsRisk-TakingRoleSchizophreniaSerotoninSiteSleepSocial EnvironmentStressSynapsesSystemTimeWorkbehavior testcombinatorialdopaminergic neuronfeedingflymotor disordernervous system disorderreceptorrecombinaseresponsestress related disordertrait
项目摘要
DESCRIPTION (provided by applicant): Amine-containing neurons are found in relatively small numbers in specific nuclei deep within the brainstem in essentially all vertebrate species, including humans. Despite their limited numbers, amine effects on behavior are profound as their neuronal processes ramify widely throughout the nervous system. Dysfunctioning of amine neuron systems has been implicated in the pathology of many psychiatric and neurological diseases. Included are motor system disorders like Parkinson's Disease in which subsets of the dopamine neurons selectively die, and psychiatric disorders including mood disorders, schizophrenia, attention-deficit hyperactivity disorder and drug abuse in which the amines dopamine, serotonin and norepinephrine all have been directly implicated. Arousal, reward, learning and memory, risk taking behavior, aggression and stress related behavioral and physiological responses are some of the multitude of essential human behaviors in which amine neurons have been suggested to play key roles. With likely roles in so many central aspects of human behavior, it is no wonder that a huge literature has grown up on amine neuron systems and how they function. Originally thought to be fairly homogeneous populations of neurons found in selective CNS nuclear regions, continuing study has revealed that these systems instead are very heterogeneous populations of neurons in terms of their function and their morphology, even within single brainstem nuclei. The most challenging part of understanding these systems now is to understand how they coordinate and/or organize the many behavioral processes they seem concerned with. A difficulty in addressing such questions in higher vertebrate nervous systems is that even though the numbers of amine neurons involved are relatively small compared to the total numbers of neurons in the brain, it is highly unlikely that one will find the same neuron more than once to explore its function in detail. Recently developed methods in other model systems, however, allow targeting and manipulation of single "identified" amine neurons. These experimental approaches are the farthest advanced in fruit flies (Drosophila melanogaster) where powerful genetic methods allow identification and manipulation of single neurons concerned with behavior. As in vertebrate systems, amines have been shown to be intimately involved in many essential aspects of behavior in fruit flies, including motivation and reward, locomotion and feeding, learning and memory, and courtship and aggression. The studies proposed here have three Specific Aims concerned with bringing the study of how amine neurons work in fruit flies to an identified single neuron level. They are: Aim 1: Use of a combinatorial genetic approach to identify small subsets of amine neurons; Aim 2: The behavioral consequences of altering the functional properties of single amine-containing neurons; and Aim 3: Analysis of the circuitry associated with single amine neurons. Studies at these levels of detail are not possible in other species at the present time.
描述(由申请人提供):含胺神经元在基本上所有脊椎动物物种(包括人类)的脑干深处的特定核中以相对较少的数量被发现。尽管它们的数量有限,但胺对行为的影响是深远的,因为它们的神经元过程在整个神经系统中广泛分支。胺神经元系统的功能障碍与许多精神和神经疾病的病理学有关。包括运动系统疾病,如帕金森氏病,其中多巴胺神经元的子集选择性死亡,以及精神疾病,包括情绪障碍,精神分裂症,注意力缺陷多动障碍和药物滥用,其中多巴胺,血清素和去甲肾上腺素都直接涉及。唤醒、奖励、学习和记忆、冒险行为、攻击和压力相关的行为和生理反应是许多基本人类行为中的一些,其中胺神经元被认为起关键作用。由于在人类行为的许多核心方面都可能发挥作用,难怪关于胺神经元系统及其功能的大量文献已经出现。最初被认为是在选择性CNS核区域中发现的相当同质的神经元群体,持续的研究表明,这些系统在功能和形态方面是非常异质的神经元群体,即使在单个脑干核内也是如此。现在理解这些系统最具挑战性的部分是理解它们是如何协调和/或组织它们所关注的许多行为过程的。在高等脊椎动物神经系统中解决这些问题的一个困难是,即使与大脑中神经元的总数相比,所涉及的胺神经元的数量相对较小,人们也不太可能多次找到同一个神经元来详细探索其功能。然而,最近在其他模型系统中开发的方法允许靶向和操纵单个“识别的”胺神经元。这些实验方法在果蝇(Drosophila melanogaster)中是最先进的,强大的遗传方法允许识别和操纵与行为有关的单个神经元。在脊椎动物系统中,胺已被证明与果蝇行为的许多基本方面密切相关,包括动机和奖励,运动和进食,学习和记忆,以及求偶和攻击。这里提出的研究有三个具体目标,涉及将果蝇中胺神经元如何工作的研究带到一个确定的单神经元水平。它们是:目标1:使用组合遗传学方法来识别胺神经元的小子集;目的2:改变单个含胺神经元的功能特性的行为后果;目的3:与单个胺神经元相关的电路分析。目前,在其他物种中不可能进行这种详细程度的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward A Kravitz其他文献
Crustaceans played a primary role in establishing gamma-aminobutyric acid as a neurotransmitter
- DOI:
10.1016/j.cois.2024.101252 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Edward A Kravitz;Saheli Sengupta - 通讯作者:
Saheli Sengupta
Edward A Kravitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward A Kravitz', 18)}}的其他基金
Aggression in Drosophila: circuitry involved; learning and memory accompanying aggression; and establishing the circuitry of high-level aggression in the brain
果蝇的攻击性:涉及电路;
- 批准号:
10488182 - 财政年份:2016
- 资助金额:
$ 7.2万 - 项目类别:
Aggression in Drosophila: circuitry involved; learning and memory accompanying aggression; and establishing the circuitry of high-level aggression in the brain
果蝇的攻击性:涉及电路;
- 批准号:
9923698 - 财政年份:2016
- 资助金额:
$ 7.2万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual