CRCNS: Neural Reprensentation of Hierarchical Visual Concepts in Natural Scenes

CRCNS:自然场景中分层视觉概念的神经表示

基本信息

  • 批准号:
    8535775
  • 负责人:
  • 金额:
    $ 34.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The complexity of natural images is potentially enormous: the number of possible images that can be described by a smallish (100 by 100 pixels) picture is practically infinite (10000256), more than all the images the human race has ever witnessed during its entire existence. How can any system process input data of this magnitude of dimensions and interpret/understand it in terms of the estimated 200,000 objects in the world, their spatial layouts, and scene structures? Yet, this is a task that human visual systems routinely perform in a fraction of a second. The secret must lie in the fact that natural images are highly redundant, living in a restricted space inside this universe of almost infinite possibilities, and that mammalian visual systems have discovered and exploited this fact. In particular, we conjecture that neurons and populations are tuned to the statistical structure of natural images, building on previous work showing, for example, that sparse coding ideas can help predict receptive field properties of 'simple cells' in the visual cortex. This proposal has three stages. Firstly, we will perform a statistical analysis of natural images to classify and model the types of visual patches that appear. This will result in a stimulus dictionary, which will be used as stimuli to investigate the tuning properties of neurons and neuronal populations, and a visual concept dictionary which will be used to make predictions for the tuning properties. Secondly, we will perform multielectrode neurophysiological investigation of the tuning properties of neurons, and neuron populations, at different levels of the visual cortex in response to the stimulus dictionary. Thirdly, we will perform data analysis to model the tuning properties of neurons and populations using a combination of model-driven, which assumes that neurons are tuned to statistical properties of images, and data-driven approaches which can be thought of as learning 'neural visual concepts' directly from the neuron's response to the stimuli. Our theoretical approach - for learning the stimuli dictionary, the visual concepts, and performing data analysis - is based on statistical and machine learning techniques. These assume a hierarchical compositional structure for the data which offers the possibility of taming the complexity of natural images and is also consistent with the known hierarchical structure of the visual cortex. Intellectual merit: This research will help understand the structure of natural images, determine models for the tuning properties of neurons in the visual cortex, and develop novel data analysis techniques. It has the potential to significantly advance our understanding of the statistical structures of natural images and the neural encoding of these structures, including the population level. This will lead to greater understanding of the visual cortex and also help the development of computer vision systems. Broader impacts: This project is interdisciplinary in nature and should have broad impact in multiple disciplines: neuroscience and biological vision, statistical neural data analysis, computer vision, and machine learning. Understanding neuronal properties in the visual cortex is a pre-requisite to the clinical enterprise of developing therapeutic methods and prosthetic devices for the visually impaired. The proposed research program will help facilitate a new graduate program in Computational and Cognitive Neuroscience at UCLA, an inter-college undergraduate minor in Neural Computation at CMU that the investigators are developing at their respective universities. The investigators also plan to organize workshops in NIPS, COSYNE, as well as to integrate their research into both undergraduate and graduate curriculum in their respective universities. This work will also affect undergraduate students at other colleges, by a summer undergraduate training program in Pittsburgh, another at CMU's Qatar campus. In addition, we will propose a workshop and summer school at IPAM (UCLA). We anticipate that this research will lead to invited lectures, peer reviewed publications and, if successful, will have national and international impact. The PIs have good track record in involving undergraduates, including women and minorities, in their NSF-sponsored research, and will continue to endeavor in the training of the next generation of computational neuroscientists.
自然图像的复杂性可能是巨大的:可以由一张小(100 × 100像素)图片描述的可能图像的数量实际上是无限的(10000256),比人类在其整个存在期间所目睹的所有图像都要多。任何一个系统如何能够处理如此大规模的输入数据,并根据世界上大约20万个对象、它们的空间布局和场景结构来解释/理解它呢?然而,这是人类视觉系统在几分之一秒内例行执行的任务。秘密一定在于这样一个事实,即自然图像是高度冗余的,生活在这个几乎无限可能的宇宙中的一个有限的空间里,哺乳动物的视觉系统已经发现并利用了这一事实。特别是,我们推测,神经元和人口的自然图像的统计结构,建立在以前的工作表明,例如,稀疏编码的想法可以帮助预测的“简单细胞”在视觉皮层的感受野特性。这项建议分三个阶段。首先,我们将对自然图像进行统计分析,对出现的视觉补丁类型进行分类和建模。这将导致一个刺激字典,这将被用作刺激,以调查神经元和神经元群体的调谐特性,和一个视觉概念字典,这将被用来预测调谐特性。其次,我们将进行多电极神经生理学研究的调谐特性的神经元,神经元群体,在不同层次的视觉皮层的刺激字典。第三,我们将进行数据分析,使用模型驱动和数据驱动方法的组合来模拟神经元和种群的调谐特性,模型驱动方法假设神经元被调谐到图像的统计特性,数据驱动方法可以被认为是直接从神经元对刺激的反应中学习“神经视觉概念”。我们的理论方法-学习刺激字典,视觉概念和执行数据分析-是基于统计和机器学习技术。这些假设一个层次的组成结构的数据,提供了驯服的复杂性的自然图像的可能性,也是符合已知的视觉皮层的层次结构。智力优点:这项研究将有助于理解自然图像的结构,确定视觉皮层神经元调谐特性的模型,并开发新的数据分析技术。它有可能显着提高我们对自然图像的统计结构和这些结构的神经编码的理解,包括人口水平。这将有助于更好地理解视觉皮层,也有助于计算机视觉系统的发展。更广泛的影响:该项目本质上是跨学科的,应该在多个学科产生广泛的影响:神经科学和生物视觉,统计神经数据分析,计算机视觉和机器学习。了解视觉皮层中的神经元特性是为视力受损者开发治疗方法和假体装置的临床企业的先决条件。拟议的研究计划将有助于促进加州大学洛杉矶分校计算和认知神经科学的新研究生课程,这是CMU神经计算的跨学院本科未成年人,研究人员正在各自的大学开发。研究人员还计划在NIPS,COSYNE组织研讨会,并将他们的研究纳入各自大学的本科和研究生课程。这项工作也将影响其他学院的本科生,匹兹堡的一个夏季本科生培训项目,CMU卡塔尔校区的另一个项目。此外,我们将在IPAM(UCLA)举办研讨会和暑期学校。我们预计,这项研究将导致邀请讲座,同行评审的出版物,如果成功,将有国家和国际影响。PI在让包括女性和少数民族在内的本科生参与NSF赞助的研究方面有着良好的记录,并将继续奋进培养下一代计算神经科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAI-SING LEE其他文献

TAI-SING LEE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAI-SING LEE', 18)}}的其他基金

REPRESENTATION OF FAMILIAR IMAGES IN VENTRAL STREAM VISUAL CORTEX
腹侧流视觉皮层中熟悉图像的表征
  • 批准号:
    9886926
  • 财政年份:
    2020
  • 资助金额:
    $ 34.38万
  • 项目类别:
REPRESENTATION OF FAMILIAR IMAGES IN VENTRAL STREAM VISUAL CORTEX
腹侧流视觉皮层中熟悉图像的表征
  • 批准号:
    10326832
  • 财政年份:
    2020
  • 资助金额:
    $ 34.38万
  • 项目类别:
REPRESENTATION OF FAMILIAR IMAGES IN VENTRAL STREAM VISUAL CORTEX
腹侧流视觉皮层中熟悉图像的表征
  • 批准号:
    10077561
  • 财政年份:
    2020
  • 资助金额:
    $ 34.38万
  • 项目类别:
CRCNS: Neural Reprensentation of Hierarchical Visual Concepts in Natural Scenes
CRCNS:自然场景中分层视觉概念的神经表示
  • 批准号:
    8312499
  • 财政年份:
    2011
  • 资助金额:
    $ 34.38万
  • 项目类别:
CRCNS: Neural Reprensentation of Hierarchical Visual Concepts in Natural Scenes
CRCNS:自然场景中分层视觉概念的神经表示
  • 批准号:
    8731899
  • 财政年份:
    2011
  • 资助金额:
    $ 34.38万
  • 项目类别:
CRCNS: Neural Reprensentation of Hierarchical Visual Concepts in Natural Scenes
CRCNS:自然场景中分层视觉概念的神经表示
  • 批准号:
    8255663
  • 财政年份:
    2011
  • 资助金额:
    $ 34.38万
  • 项目类别:
CRCNS: Neural Reprensentation of Hierarchical Visual Concepts in Natural Scenes
CRCNS:自然场景中分层视觉概念的神经表示
  • 批准号:
    8535310
  • 财政年份:
    2011
  • 资助金额:
    $ 34.38万
  • 项目类别:
MULTIELECTRODE ANALYSIS TOOL DEVELOPMENT
多电极分析工具开发
  • 批准号:
    7723101
  • 财政年份:
    2008
  • 资助金额:
    $ 34.38万
  • 项目类别:
MULTIELECTRODE ANALYSIS TOOL DEVELOPMENT
多电极分析工具开发
  • 批准号:
    7601262
  • 财政年份:
    2007
  • 资助金额:
    $ 34.38万
  • 项目类别:
MULTIELECTRODE ANALYSIS TOOL DEVELOPMENT
多电极分析工具开发
  • 批准号:
    7181606
  • 财政年份:
    2004
  • 资助金额:
    $ 34.38万
  • 项目类别:

相似海外基金

AMFaces: Advanced Additive Manufacturing of User-Focused Facial Prostheses with Real-Life Colour Appearance
AMFaces:以用户为中心的面部假体的先进增材制造,具有真实的色彩外观
  • 批准号:
    EP/W033968/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Research Grant
Understanding the appearance mechanism of ferroelectric liquid crystals showing spontaneous polarization in the director and developing their applications.
了解铁电液晶在指向矢中表现出自发极化的出现机制并开发其应用。
  • 批准号:
    23H00303
  • 财政年份:
    2023
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Elucidating the mechanism in the color appearance of small-field stimulus on chromatic surroundings
阐明彩色环境中小场刺激的颜色外观机制
  • 批准号:
    22K20317
  • 财政年份:
    2022
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Body, appearance, and health surveillance in female youth friendship contexts
女性青少年友谊背景下的身体、外表和健康监测
  • 批准号:
    2690554
  • 财政年份:
    2022
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Studentship
Learning to Recognize Faces Despite Within-Person Variability in Appearance: A Developmental Approach
尽管人与人之间的外表存在差异,但仍要学习识别面孔:一种发展方法
  • 批准号:
    RGPIN-2022-04386
  • 财政年份:
    2022
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Discovery Grants Program - Individual
Path-space Exploration for Light Transport and Appearance Modelling
光传输和外观建模的路径空间探索
  • 批准号:
    RGPIN-2018-05669
  • 财政年份:
    2022
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Discovery Grants Program - Individual
Appearance of negative influences of global warming on crop production and measures against it
全球变暖对农作物生产的负面影响的显现及应对措施
  • 批准号:
    21H02330
  • 财政年份:
    2021
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A sociological study on appearance discrimination during employment selection
就业选择中外表歧视的社会学研究
  • 批准号:
    21K13447
  • 财政年份:
    2021
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The influence of river environment on urban appearance of wildlife
河流环境对野生动物城市面貌的影响
  • 批准号:
    21K12322
  • 财政年份:
    2021
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Method for assessing women's perceptions of their appearance in the context of breast cancer care
评估乳腺癌护理背景下女性对其外表的看法的方法
  • 批准号:
    10196213
  • 财政年份:
    2021
  • 资助金额:
    $ 34.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了