Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
基本信息
- 批准号:8580883
- 负责人:
- 金额:$ 16.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAreaBayesian MethodCardiovascular systemCaregiversCharacteristicsClinicalComplexComputer softwareConflict (Psychology)DataData AnalysesData SetData SourcesDevelopmentDiseaseEffectivenessEventFutureGoalsHealthIndividualInterventionJournalsLanguageMeasuresMeta-AnalysisMethodologyMethodsModelingOdds RatioOutcomeOutcomes ResearchParentsPatient PreferencesPatient-Focused OutcomesPatientsPeer ReviewPerformancePhasePropertyPublic HealthRandomizedRandomized Clinical TrialsRandomized Controlled TrialsRelative (related person)Relative RisksReportingResearchResearch PersonnelResearch Project GrantsRiskSafetySchemeStatistical MethodsTestingTreatment EfficacyTreatment ProtocolsTreatment outcomeUnited States National Institutes of HealthWeightWorkWritinganalytical methodbasecancer therapyclinical practicecomparative effectivenesscostdesigneffectiveness researchexperienceimprovedinnovationpatient orientedpreferenceprogramspublic health relevancerandomized trialresponsesimulationsoftware developmentsystematic reviewtheoriestooltreatment effecttrial comparinguser friendly softwareweb pageweb site
项目摘要
DESCRIPTION (provided by applicant): Comparative effectiveness research (CER) relies fundamentally on accurate assessment of treatment efficacy and safety that, ideally, can be tailored to specific patients. The growing number of treatment options for a given condition, as well as the rapid escalation in their costs, has generated an increasing need for scientifically rigorous simultaneous comparisons of multiple treatments in clinical practice. Also called mixed or multiple treatments meta-analysis, network meta-analysis (NMA) expands the scope of a conventional pairwise meta-analysis by simultaneously analyzing both direct comparisons of interventions within randomized controlled trials and indirect comparisons across trials .... Compared to traditional meta-analysis of just two treatments, NMA presents many additional statistical challenges. In particular, a typical randomized trial compares only a few (typically tw) treatments, which intrinsically creates a large amount of missing data when, say, a dozen treatments must be compared simultaneously, since the outcomes for treatments not studied in a particular trial are missing by design. Currently available statistical methods, which are based on treatment contrasts, focus only on relative treatment effect estimates and have other serious limitations. The overall goal of this proposal is to develop cutting-edge statistical methods, and
to integrate them into publicly available, easy-to-use software, to enhance patient-centered NMA. Specifically, we will develop multivariate Bayesian hierarchical models for binary outcomes from the perspective of missing data methods with the following three specific aims: 1) to extend our preliminary work on estimating patient-centered parameters (e.g., absolute risk, risk difference and relative risk) with a single endpoint to allow non-ignorable missingness; 2) to
simultaneously model multiple endpoints (e.g. outcomes for efficacy and safety) with proper consideration of non-ignorable missingness; and 3) to incorporate individual patient characteristics. In addition, we propose new methods to measure and detect inconsistency between the direct and indirect evidence, and to borrow strength cautiously from less reliable data sources. We propose to perform empirical assessment of the strengths and weaknesses of these methods through many real data applications and simulations. Completion of the three aims will substantially advance CER analytical methods for comparing multiple treatments across multiple endpoints and tailored to patient characteristics.
描述(由申请人提供):比较有效性研究(CER)从根本上依赖于对治疗有效性和安全性的准确评估,理想情况下,可以针对特定患者进行量身定制。针对特定病症的治疗选择越来越多,以及其成本的快速上升,使得越来越需要在临床实践中对多种治疗进行科学严格的同时比较。网络荟萃分析(NMA)也被称为混合或多重治疗荟萃分析,通过同时分析随机对照试验中干预措施的直接比较和试验间的间接比较,扩大了传统成对荟萃分析的范围。与传统的仅两种治疗的荟萃分析相比,NMA提出了许多额外的统计挑战。特别是,一个典型的随机试验只比较了几种(通常是两种)治疗方法,这在本质上造成了大量的缺失数据,比如说,当必须同时比较十几种治疗方法时,因为在特定试验中没有研究的治疗方法的结果是设计缺失的。目前可用的统计方法,这是基于治疗对比,只侧重于相对治疗效果的估计,并有其他严重的局限性。 该提案的总体目标是开发最先进的统计方法,
将它们整合到公开可用的易于使用的软件中,以增强以患者为中心的NMA。具体来说,我们将从缺失数据方法的角度开发二元结果的多变量贝叶斯分层模型,具有以下三个具体目标:1)扩展我们在估计以患者为中心的参数(例如,绝对风险、风险差和相对风险),具有单一终点,以允许不可验证的缺失; 2)
同时对多个终点(例如有效性和安全性结局)进行建模,并适当考虑不可重复的缺失; 3)纳入个体患者特征。此外,我们提出了新的方法来测量和检测直接和间接证据之间的不一致性,并谨慎地从不太可靠的数据源中借用力量。 我们建议通过许多真实的数据应用和模拟来对这些方法的优点和缺点进行实证评估。这三个目标的实现将大大推进CER分析方法,以比较多个终点的多种治疗方法,并根据患者特征进行定制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haitao Chu其他文献
Haitao Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haitao Chu', 18)}}的其他基金
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
10015333 - 财政年份:2019
- 资助金额:
$ 16.81万 - 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
9815902 - 财政年份:2019
- 资助金额:
$ 16.81万 - 项目类别:
Joint Meta-Regression Methods Accounting for Postrandomization Variables
考虑随机化后变量的联合元回归方法
- 批准号:
9431714 - 财政年份:2017
- 资助金额:
$ 16.81万 - 项目类别:
Aiding Effective Decision Making in Dental Research Using Network Meta-analysis
使用网络元分析帮助牙科研究中的有效决策
- 批准号:
8806160 - 财政年份:2015
- 资助金额:
$ 16.81万 - 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
9108437 - 财政年份:2015
- 资助金额:
$ 16.81万 - 项目类别:
Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
- 批准号:
8661112 - 财政年份:2013
- 资助金额:
$ 16.81万 - 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:
8267547 - 财政年份:2011
- 资助金额:
$ 16.81万 - 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:
8164771 - 财政年份:2011
- 资助金额:
$ 16.81万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 16.81万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 16.81万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 16.81万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 16.81万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 16.81万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 16.81万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 16.81万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 16.81万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 16.81万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 16.81万 - 项目类别: