The role of extrusion in controlling epithelial homeostasis

挤压在控制上皮稳态中的作用

基本信息

  • 批准号:
    8342341
  • 负责人:
  • 金额:
    $ 32.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The role of extrusion in controlling epithelial homeostasis Project Summary/Abstract Epithelia provide a protective barrier for the organs they encase; yet cells comprising this barrier are constantly renewed via cell death (apoptosis) and division. Surprisingly little is known about what triggers cells to naturally divide or die or how he number of cells dying and dividing are balanced during homeostasis. However, maintaining this balance is critical for maintaining barrier function and preventing diseases: if the death rate is higher, barrier function diseases such as asthma may result and if the division rate is higher, solid tumors will result. Through our investigations of how cells maintain a barrier when they die, we believe we have discovered a novel mechanism for how epithelia maintain homeostatic cell numbers, which we further investigate in this proposal. We previously discovered that when a cell dies within an epithelium, it signals its neighboring cells to form a contractile actomyosin rng to extrude it out. To do so, the dying cell emits the lipid Sphingosine 1-Phosphate (S1P), which activates extrusion by signaling the S1P receptor 2 (S1P2) in neighboring cells. More recently, we have found that in adult colon tissue and in developing zebrafish epidermis, epithelial cells appear to extrude prior to dying at sites of high cell crowding. Live cells also extrude in respons to experimental overcrowding using a chamber we devised. While both homeostatic and overcrowding-induced extrusion use the same S1P-S1P2 pathway we defined for apoptotic cell extrusion, the live cell extrusion pathway is activated by the stretch-activated channel Piezo 1. Importantly, we found that disrupting either stretch-activated signaling or the S1P-S1P2 pathway leads to cellular masses in both cell culture and developing zebrafish. Thus, we propose a model where the underlying tissue provides a space limit on epithelia so that any cell divisions and/or migrations cause overcrowding strain, which induces live cells to extrude. Extruding cells then die due to lack of survival signaling while promoting surrounding to survive and proliferate. We will test this hypothesis in Aims 1 and 2 by 1) investigating if extrusion promotes cell death in a cell culture model and 2) testing if cell masses in S1P2 zebrafish mutants result from lack of cell extrusion, increased proliferation, or both. To define what activates extrusion, we will 3) determine how Piezo 1 stretch-activated channels and calcium currents mediate S1P to trigger extrusion and 4) identify cell- cell or cell-matrix proteins critical for determining which cells extrude in response to uniform epithelial crowding forces. The proposed research is innovative because it investigates a novel mechanism for how epithelial cells maintain homeostatic cell numbers and uses multidisciplinary approaches, which include a zebrafish epidermal model we have developed to study epithelia and a cell overcrowding device we have developed with a bioengineer. The proposal is medically significant because misregulation of epithelial homeostasis is likely at the heart of most solid tumor formation and barrier function diseases. PUBLIC HEALTH RELEVANCE: Epithelia monolayers or bilayers coat and protect organs within the body and are sites where most solid tumors form. Epithelial cells constantly turn over by cell division and death, yet little is known about how these rates are linked, despite that disruption of this link is likely at the heart of tumor formation. We have discovered a process for how epithelia preserve their functional barrier when cells die, which also appears to control homeostatic cell numbers in response to intrinsic overcrowding.
描述(由申请人提供):挤出在控制上皮稳态中的作用项目概述/摘要上皮为它们包裹的器官提供保护屏障;然而构成该屏障的细胞通过细胞死亡(凋亡)和分裂不断更新。令人惊讶的是,关于是什么触发细胞自然分裂或死亡,或者在体内平衡期间死亡和分裂的细胞数量如何平衡,人们知之甚少。然而,维持这种平衡对于维持屏障功能和预防疾病至关重要:如果死亡率较高,可能会导致哮喘等屏障功能疾病,如果分裂率较高,则会导致实体瘤。通过我们对细胞死亡时如何维持屏障的研究, 我们相信我们已经发现了上皮细胞如何维持稳态细胞数量的一种新机制,我们将在本提案中对此进行进一步研究。我们先前发现,当上皮内的细胞死亡时,它会向邻近的细胞发出信号,形成收缩性肌动球蛋白rng将其挤出。为了做到这一点,垂死的细胞释放出脂质鞘氨醇1-磷酸(S1 P),通过向邻近细胞中的S1 P受体2(S1 P2)发出信号来激活挤出。最近,我们发现在成年结肠组织和发育中的斑马鱼表皮中,上皮细胞在细胞高度拥挤的部位死亡之前似乎会挤出。使用我们设计的一个腔室,活细胞也会在实验过度拥挤时挤出。虽然稳态和过度拥挤诱导的挤出都使用我们定义的凋亡细胞挤出相同的S1 P-S1 P2途径,但活细胞挤出途径由拉伸激活通道Piezo 1激活。重要的是,我们发现,破坏拉伸激活信号或S1 P-S1 P2通路导致细胞培养物和发育中的斑马鱼中的细胞团。因此,我们提出了一个模型,其中底层组织提供了对上皮细胞的空间限制,使得任何细胞分裂和/或迁移引起过度拥挤的应变,这诱导活细胞挤出。挤出的细胞由于缺乏生存信号而死亡,同时促进周围的生存和增殖。我们将通过以下方式在目的1和2中测试该假设:1)研究挤压是否促进细胞培养模型中的细胞死亡,和2)测试S1 P2斑马鱼突变体中的细胞团是否由于缺乏细胞因子而导致。 细胞挤出、增殖增加或两者兼有。为了定义什么激活挤出,我们将3)确定压电1拉伸激活通道和钙电流如何介导S1 P以触发挤出,以及4)鉴定对于确定哪些细胞响应于均匀上皮拥挤力而挤出至关重要的细胞-细胞或细胞-基质蛋白。拟议的研究是创新的,因为它研究了上皮细胞如何维持稳态细胞数量的新机制,并使用多学科方法,其中包括我们开发的用于研究上皮细胞的斑马鱼表皮模型和我们与生物工程师开发的细胞过度拥挤装置。该提议具有医学意义,因为上皮稳态的失调可能是大多数实体瘤形成和屏障功能疾病的核心。 公共卫生相关性:上皮细胞单层或双层覆盖并保护体内器官,是大多数实体瘤形成的部位。上皮细胞通过细胞分裂和死亡不断翻转,但人们对这些速率如何联系知之甚少,尽管这种联系的破坏可能是肿瘤形成的核心。我们发现了一个过程 当细胞死亡时,上皮细胞如何保持其功能屏障,这似乎也控制了响应内在过度拥挤的稳态细胞数量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jody Snow Rosenblatt其他文献

Jody Snow Rosenblatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jody Snow Rosenblatt', 18)}}的其他基金

The role of extrusion in controlling epithelial homeostasis
挤压在控制上皮稳态中的作用
  • 批准号:
    8654349
  • 财政年份:
    2012
  • 资助金额:
    $ 32.14万
  • 项目类别:
The role of extrusion in controlling epithelial homeostasis
挤压在控制上皮稳态中的作用
  • 批准号:
    8515474
  • 财政年份:
    2012
  • 资助金额:
    $ 32.14万
  • 项目类别:
The Role of Extrusion in Controlling Epithelial Homeostasis
挤压在控制上皮稳态中的作用
  • 批准号:
    9330186
  • 财政年份:
    2012
  • 资助金额:
    $ 32.14万
  • 项目类别:
The Role of Extrusion in Controlling Epithelial Homeostasis
挤压在控制上皮稳态中的作用
  • 批准号:
    8572960
  • 财政年份:
    2012
  • 资助金额:
    $ 32.14万
  • 项目类别:
The role of extrusion in controlling epithelial homeostasis
挤压在控制上皮稳态中的作用
  • 批准号:
    8862506
  • 财政年份:
    2012
  • 资助金额:
    $ 32.14万
  • 项目类别:
Identification of signals that extrude an apoptotic cell from an epithelium
鉴定从上皮中挤出凋亡细胞的信号
  • 批准号:
    7430578
  • 财政年份:
    2007
  • 资助金额:
    $ 32.14万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32.14万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 32.14万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了