Advancing patient call light systems to achieve better outcomes

改进患者呼叫灯系统以实现更好的结果

基本信息

  • 批准号:
    8550133
  • 负责人:
  • 金额:
    $ 60.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-30 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Current nurse call systems lack patient-centric interfaces (i.e. pillow speakers) and the ability to relay specific requests to the most appropriat providers, which negatively impacts operational efficiency. Further, existing systems neither provide a means for limited English proficiency (LEP) patients to make call requests in their native language nor the ability to communicate basic needs with their providers without the aid of an interpreter. These deficiencies lead to inefficient nursing workflow, remain an ongoing source of medical error, and patient safety failures. It has been estimated that inefficient hospitl communication costs U.S. hospitals more than $12 billion annually, or $4 million for each 500-bed hospital.1 Patient Provider Communications, Inc. (PPC) is a start-up healthcare technology company developing EloquenceTM, a comprehensive, evidence- based, patient-centric nurse call solution. The proprietary technology includes an enhanced bedside device (i.e., pillow speaker) for patients to deliver up to 30 specific messages to nursing personnel with automated routing to the most appropriate provider based upon availability and skill level required to fulfil the request. The Phase I STTR determined the precise user requirements and methodology that would ensure successful adoption by both patients and nurses and delivered an alpha prototype consisting of an interactive digital touch screen offering a comprehensive and strategically organized list of patient nurse call requests paired with nurse paging devices and an interactive whiteboard for at-a glance status of nurse call activity for each nursing unit. After rigorous user testing, both patient and nurse groups rated the prototype as more useful, effective and more appropriate compared to existing solutions. The long-term goal of this STTR is commercialization of a nurse call solution that will decrease patient safety failures, give LEP patients equitable access to nurse call systems, improve operational efficiency and decrease overall hospital costs. The Phase II hypothesis is that Eloquencewill meet requirements for LEP patients to effectively use nurse call systems, reduce nurse call fulfillment time by 20%, offload 30% of call requests from nurses to nurse assistants, and will be rated as more efficient, effective and safer than the current nurse call system by patient and nurses. PPC will test the hypothesis with the following aims: 1) Develop a patient-centric bilingual version of Eloquence for LEP patients; 2) Prototype a commercially equivalent prototype of Eloquence and verify technical specifications of the system; 3) Simulate workflow improvement and assess user satisfaction with Eloquence using data collected on a single patient care unit. PPC will enter the health care IT market specializing in nurse call systems, a $16 billion annual market, offering Eloquence as a vendor agnostic complementary solution to current technology. PPC will position their proprietary enhanced pillow speaker as the most "intelligent and efficient" nurse call solution streamlining nursing workflow, improving healthcare delivery, and the only patient- centric pillow speaker available that gives equitable access to LEP patients.
描述(由申请人提供):当前的护士呼叫系统缺乏以患者为中心的界面(即枕头扬声器)以及将特定请求中继到最合适的提供者的能力,这对操作效率产生了负面影响。此外,现有的系统既没有为英语能力有限(LEP)的患者提供以他们的母语进行呼叫请求的手段,也没有在没有口译员的帮助下与他们的提供者传达基本需求的能力。这些缺陷导致护理工作流程效率低下,仍然是医疗错误和患者安全失败的持续来源。据估计,低效的医院通信每年使美国医院损失超过120亿美元,或每个500张病床的医院损失400万美元。(PPC)是一家新兴的医疗保健技术公司,开发EloquenceTM,一个全面的,以证据为基础的,以病人为中心的护士呼叫解决方案。专有技术包括增强型床边设备(即,枕头扬声器),用于患者向护理人员传递多达30条特定消息,并根据可用性和满足请求所需的技能水平自动路由到最合适的提供者。第I阶段STTR确定了精确的用户需求和方法,以确保患者和护士成功采用,并提供了一个alpha原型,包括一个交互式数字触摸屏,提供一个全面的和战略性组织的患者护士呼叫请求列表,与护士寻呼设备配对,以及一个交互式白板,用于一目了然每个护理单元的护士呼叫活动状态。经过严格的用户 测试中,病人和护士团体都认为原型比现有的解决方案更有用,更有效,更合适。该STTR的长期目标是将护士呼叫解决方案商业化,以减少患者安全故障,使LEP患者能够公平地使用护士呼叫系统,提高运营效率并降低整体医院成本。第二阶段的假设是,Eloquence将满足LEP患者有效使用护士呼叫系统的要求,减少20%的护士呼叫履行时间,将30%的呼叫请求从护士转移到护士助理,并将被患者和护士评为比目前的护士呼叫系统更高效,更有效和更安全。PPC将测试假设,目标如下:1)为LEP患者开发以患者为中心的双语版Eloquence; 2)原型化Eloquence的商业等效原型,并验证系统的技术规格; 3)模拟工作流程改进,并使用在单个患者护理单元收集的数据评估用户对Eloquence的满意度。PPC将进入专门从事护士呼叫系统的医疗保健IT市场,这是一个每年160亿美元的市场,提供Eloquence作为当前技术的供应商不可知的补充解决方案。PPC将其专有的增强型枕头扬声器定位为最“智能和高效”的护士呼叫解决方案,简化护理工作流程,改善医疗保健服务,以及唯一以患者为中心的枕头扬声器,为LEP患者提供公平的访问。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik William Keup其他文献

Erik William Keup的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 60.31万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 60.31万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了