Computer-Based Pronunciation Analysis for Children with Speech Sound Disorders
基于计算机的语音障碍儿童发音分析
基本信息
- 批准号:8336853
- 负责人:
- 金额:$ 18.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-21 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAdultAffectAlgorithmsAmerican Speech-Language-Hearing AssociationCharacteristicsChildClassificationCommunicationComplementComputer AssistedComputersDataData SetDiagnosisDiseaseEvaluationFeedbackGeneral PopulationGenetic TranscriptionGoalsHumanIndividualJointsLanguageLocationManualsMeasuresMethodsMetricNursery SchoolsOutputParticipantPathologistPerformancePhoneticsPopulationProbabilityProcessProductionPublic HealthReadingResearchSchool-Age PopulationSchoolsSignal TransductionSoftware ToolsSourceSpeechSpeech SoundSystemSystems AnalysisTechniquesTechnologyTestingTimeTrainingWorkWritingbasedisabilityinnovationmarkov modelmathematical abilitypeerphonologyremediationspellingstatisticssuccessteachertool
项目摘要
Summary
The long-term objective of the proposed work is to develop speech-production assessment and pronunciation-
training tools for children with speech sound disorders. The technology resulting from research on computer-
assisted pronunciation training has not yet been successfully extended to help children with speech sound
disorders, primarily because of a lack of accuracy in phoneme-level analysis of the speech signal. The goal of
the proposed exploratory research is to develop a set of algorithms that will constitute the core components of
an effective pronunciation analysis system for children with speech sound disorders. The components of this
system, when used in concert, will reliably identify and score the intelligibility of a phoneme within an isolated
target word. The algorithms will also identify specific types of distortion errors (e.g. fronting, in which the /sh/
phoneme is realized as /s/). The tools resulting from the proposed work will provide immediate, relevant, and
understandable feedback about pronunciation errors.
The Specific Aims are to (1) Create individualized speech templates for use in objective analysis of
pronunciation, (2) Automatically identify phoneme locations in speech recordings, and (3) Automatically score
phoneme intelligibility for children with speech sound disorders. For Specific Aim 1, the template for
evaluating a participant's spoken word will be selected from a large pool of templates of that word, and each
template will be further individualized to match the general spectral characteristics of the participant. For
Specific Aim 2, the primary challenge is to identify phoneme locations when the observed (spoken) phoneme
sequence is different from the expected (target) phoneme sequence. A five-step process will be used to
identify possible differences between the observed and expected phoneme sequence using several
independent sources of information. Methods will include automatic classification of manner of articulation
using a Hidden Markov Model, dynamic time warping, and a priori determination of likely phoneme errors.
Specific Aim 3 will provide a measure of the intelligibility of a target phoneme and also identify distorted
features. The scoring of intelligibility will be performed using a proposed Phoneme Intelligibility Analysis (PIA)
module, which is phoneme-specific and composed of six sources of information, including an acoustic template
of the target phoneme, likely phonetic substitutions, acoustic features used in analysis, thresholds of
acceptability, statistics of phoneme duration in the given context, and evaluation metrics. The use of human
perceptual data (intelligibility scores) as training data is an important and new component of the proposed
approach.
总结
拟议工作的长期目标是发展言语产生评估和发音-
语音障碍儿童的训练工具。从计算机研究中产生的技术-
辅助发音训练还没有成功地扩展到帮助儿童说话的声音
疾病,主要是因为语音信号的音素级分析缺乏准确性。的目标
建议的探索性研究是开发一套算法,将构成的核心组成部分,
一个有效的语音分析系统,为儿童语音障碍。这个的组成部分
系统,当在音乐会上使用时,将可靠地识别和评分孤立的音素内的可懂度。
目标词这些算法还将识别特定类型的失真错误(例如前置,其中/sh/
音素被实现为/s/)。从拟议的工作中产生的工具将提供即时的,相关的,
关于发音错误的反馈。
具体目标是:(1)创建个性化的语音模板,用于客观分析
发音,(2)自动识别语音记录中的音素位置,以及(3)自动评分
语音障碍儿童的音素可懂度。对于具体目标1,
评估参与者的口语将从该单词的大量模板池中选择,并且每个模板
模板将进一步个性化,以匹配参与者的一般光谱特征。为
具体目标2,主要挑战是当观察到的(口语)音素
序列不同于预期的(目标)音素序列。将采用五步流程,
使用多个方法识别观察到的和预期的音素序列之间的可能差异,
独立的信息来源。方法将包括发音方式的自动分类
使用隐马尔可夫模型、动态时间弯曲和可能的音素错误的先验确定。
具体目标3将提供目标音素的可懂度的量度,并且还识别失真的音素。
功能.将使用拟议的音素可懂度分析(PIA)进行可懂度评分
模块,该模块是音素专用的,由六个信息源组成,包括一个声学模板
的目标音素,可能的语音替换,在分析中使用的声学特征,
可接受性、给定上下文中的音素持续时间的统计以及评估度量。使用人
作为训练数据的感知数据(可懂度分数)是所提出的
approach.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pronunciation analysis for children with speech sound disorders.
- DOI:10.1109/embc.2015.7319655
- 发表时间:2015-08
- 期刊:
- 影响因子:0
- 作者:Dudy S;Asgari M;Kain A
- 通讯作者:Kain A
Automatic Analysis of Pronunciations for Children with Speech Sound Disorders.
- DOI:10.1016/j.csl.2017.12.006
- 发表时间:2018-07
- 期刊:
- 影响因子:4.3
- 作者:Dudy S;Bedrick S;Asgari M;Kain A
- 通讯作者:Kain A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kain其他文献
Alexander Kain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kain', 18)}}的其他基金
Computer-Based Pronunciation Analysis for Children with Speech Sound Disorders
基于计算机的语音障碍儿童发音分析
- 批准号:
8227504 - 财政年份:2011
- 资助金额:
$ 18.91万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




