Backward and Forward Driven Eardrum Motions
向后和向前驱动鼓膜运动
基本信息
- 批准号:8248196
- 负责人:
- 金额:$ 15.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acoustic StimulationAcousticsAffectAreaAuricular prosthesisClinicalCochleaComplexComputersCoupledCouplingDataDiagnosisEvaluationExternal auditory canalFaceFrequenciesGoalsHearingKnowledgeLabyrinthLateralLightLocationMalleusMeasurementMeasuresMechanical StimulationMechanicsMembraneMiddle Ear ImplantMissionModelingMotionOpticsPatternPerformancePeripheralPhasePositioning AttributePressure TransducersProcessPropertyRoleSamplingSideSourceStagingStimulusSurfaceSystemTestingTimeTravelTympanic membraneVariantWorkbaseclinically relevantdata exchangedefined contributionmanubriummiddle earpressurepublic health relevanceresponseround windowsoundtooltransmission process
项目摘要
DESCRIPTION (provided by applicant): Sound-induced displacement of the Tympanic Membrane (TM) is the first stage in the forward transformation of environmental sound to sound within the cochlea, while displacement of the TM induced by mechanical motions of the ossicular chain is the last stage in the reverse transformation of cochlea generated sound to clinically valuable oto-acoustic emissions (OAEs) measured in the ear canal. However, our knowledge of the workings of the TM in both forward and reverse sound transmissions is limited. Although recent studies suggest complex TM surface motions in response to ear-canal sound at high frequency are consistent with multiple waves co-existing on the TM surface, the contributions of different TM displacement waves to excitation of the ossicular chain and subsequent sound transmission to inner ear are unclear. Furthermore, little is known of how the TM responds to ossicular motions produced by inner-ear generated sound or mechanical stimulation of the ossicles. There is also a lack of data describing spatial sound-pressure distributions near and far from the TM even though it is known that there are significant non-uniformities in TM motion in both forward and reverse sound transmission. This study aims to: (1) Characterize TM surface motions in response to forward stimulation by sound generated within the ear canal and reverse mechanical stimulation produced by an active middle-ear implant; (2) Produce detailed spatial profiles of sound pressure near and far from the TM that will be correlated with detailed TM surface motions in forward and reverse stimulation; and (3) Quantify the relationship between (a) TM surface motions and sound energy transmission through the middle ear to the cochlear excitations and (b) Ossicular motion and the sound transformation by the TM in reverse stimulation. We employ a newly developed stroboscopic holographic interferometer to measure displacement amplitude and phase in response to different stimuli at over 300000 points on the TM surface, together with a computer-controlled microphone positioning system to systematically sample the sound pressure within the ear canal both near (within 1 mm) and far (up to 10 mm) from the TM surface. Accomplishing these aims will: (i) Quantify the different wave types, wave amplitude and wavelength of TM surface motions produced by forward and reverse stimulation; (ii) Better define the contributions of different TM surface waves to sound transmissions in both directions; (iii) Better describe the action of the TM in clinically useful oto-acoustic emission measurements; and (iv) Investigate the clinical utility of backward driven ear-canal sound pressure measurements in the evaluation of active middle-ear prostheses that drive the intact ossicular chain or the round window.
PUBLIC HEALTH RELEVANCE: Understanding how the eardrum responds to forward (normal) sound stimuli and reverse mechanical stimuli (from oto-acoustic emissions or active middle-ear implants) will define the role of the normal eardrum. A detailed picture of sound pressure in space near the eardrum will tell us: whether irregularities in eardrum motion significantly affect the ear-canal sound field during normal stimulation, and how such irregularities affect the ear-canal sound pressures produced by sound generated within the inner or middle ear. The later question is significant to the use of oto-acoustic emissions in hearing diagnosis and the tests of middle-ear implants.
描述(由申请人提供):声音引起的鼓膜(TM)位移是环境声音到耳蜗内声音的正向转换的第一阶段,而听骨链的机械运动引起的TM位移是耳蜗产生的声音到耳道中测量的临床上有价值的耳声发射(OAE)的反向转换的最后阶段。然而,我们对TM在正向和反向声音传输中的工作原理的了解是有限的。虽然最近的研究表明,复杂的TM表面运动响应耳道声音在高频率是一致的多波共存的TM表面上,不同的TM位移波的贡献,激发听骨链和随后的声音传输到内耳还不清楚。此外,TM如何响应由内耳产生的声音或听小骨的机械刺激产生的听小骨运动的知之甚少。也有一个缺乏的数据描述的空间声压分布附近和远离TM,即使它是已知的,有显着的非均匀性TM运动在正向和反向的声音传输。本研究旨在:(1)响应于由耳道内产生的声音的正向刺激和由有源中耳植入物产生的反向机械刺激来表征TM表面运动;(2)产生TM附近和远离TM的声压的详细空间分布,其将与正向和反向刺激中的详细TM表面运动相关;(3)量化(a)TM表面运动和通过中耳到耳蜗激励的声能传输与(B)听骨运动和反向刺激中TM的声音转换之间的关系。我们采用一种新开发的频闪全息干涉仪测量位移振幅和相位响应于不同的刺激在TM表面上超过30万个点,连同一个计算机控制的麦克风定位系统,系统地采样的声压在耳道内的近(1毫米内)和远(最多10毫米)从TM表面。实现这些目标将:(i)量化由正向和反向刺激产生的TM表面运动的不同波类型、波幅和波长;(ii)更好地确定不同TM表面波对两个方向上的声音传输的贡献;(iii)更好地描述TM在临床上有用的耳声发射测量中的作用;和(iv)研究后向驱动耳道声压测量在评价驱动完整听骨链或圆窗的主动中耳假体中的临床效用。
公共卫生相关性:了解鼓膜如何响应正向(正常)声音刺激和反向机械刺激(来自耳声发射或有源中耳植入物)将定义正常鼓膜的作用。鼓膜附近空间声压的详细图像将告诉我们:在正常刺激期间,鼓膜运动的不规则性是否会显著影响耳道声场,以及这种不规则性如何影响内耳或中耳内产生的声音产生的耳道声压。后一个问题对于耳声发射在听力诊断和中耳植入物测试中的应用具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Tao Cheng其他文献
Evaluation of auditory damage after blast exposure in mice.
小鼠爆炸暴露后听觉损伤的评估。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yutaka Koizumi;Aaron K Remenschneider;Jeffrey Tao Cheng;Christopher J Smalt;Kunio Mizutari;Seiji Kakehata - 通讯作者:
Seiji Kakehata
Jeffrey Tao Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Tao Cheng', 18)}}的其他基金
Middle Ear Nonlinearity in High Intensity Sound: Impact on Hearing Damage and Protection
高强度声音中的中耳非线性:对听力损伤和保护的影响
- 批准号:
10443501 - 财政年份:2017
- 资助金额:
$ 15.7万 - 项目类别:
Eardrum function in live and cadaveric ears: Research and clinical relevance
活体耳和尸体耳的鼓膜功能:研究和临床相关性
- 批准号:
9427982 - 财政年份:2017
- 资助金额:
$ 15.7万 - 项目类别:
Middle Ear Nonlinearity in High Intensity Sound: Impact on Hearing Damage and Protection
高强度声音中的中耳非线性:对听力损伤和保护的影响
- 批准号:
10591539 - 财政年份:2017
- 资助金额:
$ 15.7万 - 项目类别:
Eardrum function in live and cadaveric ears: Research and clinical relevance
活体耳和尸体耳的鼓膜功能:研究和临床相关性
- 批准号:
9289242 - 财政年份:2017
- 资助金额:
$ 15.7万 - 项目类别:
Eardrum function in live and cadaveric ears: Research and clinical relevance
活体耳和尸体耳的鼓膜功能:研究和临床相关性
- 批准号:
10089435 - 财政年份:2017
- 资助金额:
$ 15.7万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 15.7万 - 项目类别:
Discovery Launch Supplement