Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
基本信息
- 批准号:8323913
- 负责人:
- 金额:$ 23.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-06 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAppearanceBindingBiological AssayCell LineCellsChimeric ProteinsChromosomal BreaksChromosomal InstabilityChromosomal RearrangementChromosome abnormalityChromosomesClone CellsCodeDNA Double Strand BreakDNA RepairDNA Sequence RearrangementDNA repair proteinDefectDouble Strand Break RepairDsRedFrequenciesGenesGenetic RecombinationGreen Fluorescent ProteinsHealedHumanKnock-outLabelLeadLocationMalignant NeoplasmsMammalian CellMediatingModificationMonitorMutationNonhomologous DNA End JoiningOperonPhosphorylationPlasmidsPlayProcessProtein BindingProteinsRegulationResistanceRoleSiteSystemTelomere CappingTelomeric Repeat Binding Protein 2TimeYeastscancer cellcancer therapycarcinogenesischromosome lossendodeoxyribonuclease SceIgene repairhealinghelicaseinterstitialknock-downnovelnovel strategiespreventpromoterrepairedresponserestorationtelomere
项目摘要
DESCRIPTION (provided by applicant): Telomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have demonstrated that the regions near telomeres are highly sensitive to DNA double-strand breaks (DSBs), in that DSBs induced with I-SceI endonuclease near telomeres are much more likely to result in large deletions, gross chromosome rearrangements (GCRs), and chromosome instability than I-SceI-induced DSBs at other locations. Importantly, the rearrangements caused by DSBs near telomeres are the same rearrangements commonly found in human cancer cells, leading us to propose that DSBs near telomeres are an important mechanism in carcinogenesis. We have also shown that the chromosome instability caused by DSBs near telomeres can be prevented by the addition of a new telomere at the site of the DSB, a process called chromosome healing. Chromosome healing is rarely observed at DSBs at other locations, and therefore we have proposed that chromosome healing is an important mechanism for preventing chromosome instability due to DSBs near telomeres. This proposal will investigate the mechanism responsible for the sensitivity of telomeric regions to DSBs and the mechanism of regulation of chromosome healing. These studies will address the hypothesis that cis-acting telomeric proteins directly inhibit DSB repair and promote chromosome healing, consistent with evidence that the telomeric protein TRF2 inhibits the ATM and MRE11 proteins involved in the cellular response to DSBs. In Aim 1A we will characterize the DNA repair defect in telomeric regions by determining which DNA repair proteins co-localize with the I-SceI-induced DSB. This will involve cell lines in which the location of the DSB is marked with green fluorescent protein (GFP) by inserting 256 copies of a LacO operon adjacent to the I-SceI site, and expression of LacI-GFP fusion protein, which binds the LacO operon. In Aim 1B we will use cell clones containing a GFP gene and an I-SceI site adjacent to a telomere to monitor how knockdown of telomeric proteins or DSB repair proteins affects the frequency of large deletions. In Aim 1C we will characterize the DSB repair proteins involved in the formation of chromosome aberrations using cell clones that contain a GFP gene activated by intrachromosomal rearrangements, and a DsRed gene activated by interchromosomal rearrangemetns. In Aim 2A we will use a novel real-time quantitative PCR assay for chromosome healing to monitor how knockdown of telomeric proteins or ATM affects the frequency of chromosome healing in isogenic cell clones generated by moving a telomere to a location adjacent to the I-SceI site using Cre/LoxP-mediated recombination. In Aim 2B we will compare the appearance of PIF1 helicase, a protein known to inhibit chromosome healing in yeast, at subtelomeric and interstitial DSBs with and without knockdown of TRF2 or ATM, using the same cell clones containing the DSBs marked with the LacI-GFP fusion protein used in Aim 1A.
描述(申请人提供):端粒在保护染色体末端和防止染色体融合方面发挥着重要作用。我们已经证明,端粒附近的区域对 DNA 双链断裂 (DSB) 高度敏感,因为端粒附近 I-SceI 核酸内切酶诱导的 DSB 比其他位置的 I-SceI 诱导的 DSB 更有可能导致大缺失、总染色体重排 (GCR) 和染色体不稳定。重要的是,端粒附近的 DSB 引起的重排与人类癌细胞中常见的重排相同,因此我们提出端粒附近的 DSB 是致癌的重要机制。我们还表明,端粒附近的 DSB 引起的染色体不稳定可以通过在 DSB 位置添加新的端粒来预防,这一过程称为染色体愈合。在其他位置的 DSB 上很少观察到染色体愈合,因此我们提出染色体愈合是防止端粒附近 DSB 引起的染色体不稳定的重要机制。该提案将研究端粒区域对 DSB 的敏感性的机制以及染色体愈合的调节机制。这些研究将提出顺式作用端粒蛋白直接抑制 DSB 修复并促进染色体愈合的假设,这与端粒蛋白 TRF2 抑制参与 DSB 细胞反应的 ATM 和 MRE11 蛋白的证据一致。在目标 1A 中,我们将通过确定哪些 DNA 修复蛋白与 I-SceI 诱导的 DSB 共定位来表征端粒区域的 DNA 修复缺陷。这将涉及通过在 I-SceI 位点附近插入 256 个 LacO 操纵子拷贝,用绿色荧光蛋白 (GFP) 标记 DSB 位置的细胞系,并表达与 LacO 操纵子结合的 LacI-GFP 融合蛋白。在目标 1B 中,我们将使用含有 GFP 基因和邻近端粒的 I-SceI 位点的细胞克隆来监测端粒蛋白或 DSB 修复蛋白的敲低如何影响大缺失的频率。在目标 1C 中,我们将使用含有由染色体内重排激活的 GFP 基因和由染色体间重排激活的 DsRed 基因的细胞克隆来表征参与染色体畸变形成的 DSB 修复蛋白。在目标 2A 中,我们将使用一种新型的染色体愈合实时定量 PCR 测定来监测端粒蛋白或 ATM 的敲低如何影响同基因细胞克隆中染色体愈合的频率,这些克隆是通过使用 Cre/LoxP 介导的重组将端粒移动到 I-SceI 位点附近的位置而产生的。在目标 2B 中,我们将使用含有目标 1A 中使用的 LacI-GFP 融合蛋白标记的 DSB 的相同细胞克隆,比较 PIF1 解旋酶(一种已知抑制酵母染色体愈合的蛋白质)在敲除 TRF2 或 ATM 和未敲除 TRF2 或 ATM 的情况下在亚端粒和间质 DSB 中的外观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John P. Murnane其他文献
Krebs und Telomere
克雷布斯和端粒
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Oliver Zschenker;John P. Murnane - 通讯作者:
John P. Murnane
Cell cycle regulation in response to DNA damage in mammalian cells: A historical perspective
- DOI:
10.1007/bf00690296 - 发表时间:
1995-09-01 - 期刊:
- 影响因子:8.700
- 作者:
John P. Murnane - 通讯作者:
John P. Murnane
John P. Murnane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John P. Murnane', 18)}}的其他基金
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
8466195 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
8676447 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
7073078 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
7257814 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
8842432 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
7623945 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
8181278 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
8849386 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
7429764 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
Chromosome instability resulting from double-strand breaks near telomeres
端粒附近双链断裂导致染色体不稳定
- 批准号:
7848838 - 财政年份:2006
- 资助金额:
$ 23.97万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 23.97万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 23.97万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 23.97万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 23.97万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 23.97万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 23.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 23.97万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 23.97万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 23.97万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 23.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




