NO-dependent SOD3 protection against cachexia

NO 依赖性 SOD3 预防恶病质

基本信息

  • 批准号:
    8331375
  • 负责人:
  • 金额:
    $ 17.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cachexia is a serious medical condition in many chronic diseases, such as cancer, chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), chronic kidney disease (CKD) and some infectious diseases, affecting about 6 million people in the U.S. annually. It is characterized by loss of muscle mass (catabolic wasting) and often leads to reduced exercise capacity (exercise intolerance) and mortality. Skeletal muscle abnormalities caused by excess production of reactive oxygen species (ROS) and the consequent cellular damages underlie these detrimental conditions. It is well known that oxidative muscles are resistant to catabolic wasting; however, the underlying mechanisms remain elusive. We have shown recently in a mouse model of CHF [cardiac-specific calsequestrin (CSQ) transgenic mice] that this oxidative phenotype-associated protection in skeletal muscle is due to a nitric oxide (NO)-dependent antioxidant defense possibly through activation of the Keap1/Nrf2 scaffold protein-transcription factor complex, whereas fast-twitch glycolytic muscles lack such a protective mechanism and are vulnerable to cachectic stimuli. Our preliminary data shows that extracellular superoxide dismutase (EcSOD or SOD3) is highly expressed in oxidative and exercise- trained muscles, and augmenting NO enhances SOD3 expression and reduces catabolic wasting in glycolytic muscles. These findings indicate the functional importance of this NO-SOD3-dependent defense in skeletal muscle, which may underlie not only the protection associated with the oxidative phenotype, but also the salutary impact of endurance exercise training. We hypothesize that NO protects skeletal muscle from catabolic wasting through activation of the Keap1/Nrf2 protein complex and induction of SOD3 expression. To test this hypothesis, we propose: 1) To ascertain the functional role of SOD3 in skeletal muscle against catabolic wasting and exercise intolerance in CHF; and 2) To elucidate the "molecular switch" in the NO-dependent antioxidant defense. If our hypothesis proves to be correct, we will have uncovered a novel and important cellular defense mechanism in skeletal muscle. The studies may provide new information for more effective therapeutics for muscle wasting and exercise intolerance associated with numerous chronic diseases.
描述(申请人提供):恶病质是许多慢性疾病的一种严重疾病,如癌症、慢性阻塞性肺疾病(COPD)、充血性心力衰竭(CHF)、慢性肾脏疾病(CKD)和一些传染病,每年在美国约有600万人受到影响。它的特点是肌肉质量下降(分解代谢损耗),并经常导致运动能力降低(运动耐受)和死亡。这些有害的情况是由过量产生活性氧基(ROS)引起的骨骼肌异常和随之而来的细胞损伤所致。众所周知,氧化肌肉对分解代谢的消耗具有抵抗力;然而,其潜在的机制仍然难以捉摸。我们最近在CHF[心脏特异性钙调素(CSQ)转基因小鼠]的小鼠模型中表明,骨骼肌中的这种氧化表型相关保护是由于一氧化氮(NO)依赖的抗氧化防御,可能是通过激活Keap1/Nrf2支架蛋白-转录因子复合体,而快速抽动的糖酵解肌肉缺乏这种保护机制,并且容易受到恶病质刺激的影响。我们的初步数据显示,细胞外超氧化物歧化酶(ECSOD或SOD3)在氧化和运动训练的肌肉中高度表达,增加NO可以增强SOD3的表达,减少糖酵解肌肉中分解代谢的消耗。这些发现表明了骨骼肌中这种NO-SOD3依赖的防御功能的重要性,这可能不仅是与氧化表型相关的保护作用,也是耐力运动训练的有益影响。我们推测,NO通过激活Keap1/Nrf2蛋白复合体和诱导SOD3的表达来保护骨骼肌免受分解代谢的消耗。为了验证这一假说,我们建议:1)确定骨骼肌SOD3在CHF中对抗分解代谢消耗和运动耐量的功能作用;2)阐明NO依赖的抗氧化防御中的“分子开关”。如果我们的假设被证明是正确的,我们将发现骨骼肌中一种新颖而重要的细胞防御机制。这些研究可能会为更有效地治疗与多种慢性病相关的肌肉萎缩和运动不耐受提供新的信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhen Yan其他文献

Zhen Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhen Yan', 18)}}的其他基金

Exercise-Induced Mitophagy In Hippocampal Neurons Against AD
运动诱导的海马神经元线粒体自噬对抗 AD
  • 批准号:
    10765466
  • 财政年份:
    2022
  • 资助金额:
    $ 17.33万
  • 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
  • 批准号:
    10380087
  • 财政年份:
    2021
  • 资助金额:
    $ 17.33万
  • 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
  • 批准号:
    10551274
  • 财政年份:
    2021
  • 资助金额:
    $ 17.33万
  • 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
  • 批准号:
    10225076
  • 财政年份:
    2021
  • 资助金额:
    $ 17.33万
  • 项目类别:
mitoAMPK in exercise benefits
mitoAMPK 在运动中的益处
  • 批准号:
    10172852
  • 财政年份:
    2020
  • 资助金额:
    $ 17.33万
  • 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
  • 批准号:
    10771467
  • 财政年份:
    2020
  • 资助金额:
    $ 17.33万
  • 项目类别:
mitoAMPK in exercise benefits
mitoAMPK 在运动中的益处
  • 批准号:
    10627998
  • 财政年份:
    2020
  • 资助金额:
    $ 17.33万
  • 项目类别:
mitoAMPK in exercise benefits
mitoAMPK 在运动中的益处
  • 批准号:
    10408037
  • 财政年份:
    2020
  • 资助金额:
    $ 17.33万
  • 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
  • 批准号:
    10413230
  • 财政年份:
    2020
  • 资助金额:
    $ 17.33万
  • 项目类别:
mitoAMPK in exercise benefits
mitoAMPK 在运动中的益处
  • 批准号:
    10765945
  • 财政年份:
    2020
  • 资助金额:
    $ 17.33万
  • 项目类别:

相似海外基金

Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
  • 批准号:
    24K18002
  • 财政年份:
    2024
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
  • 批准号:
    2222215
  • 财政年份:
    2023
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
  • 批准号:
    23K09272
  • 财政年份:
    2023
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
  • 批准号:
    10652764
  • 财政年份:
    2023
  • 资助金额:
    $ 17.33万
  • 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
  • 批准号:
    10730652
  • 财政年份:
    2023
  • 资助金额:
    $ 17.33万
  • 项目类别:
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
  • 批准号:
    22K11609
  • 财政年份:
    2022
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
  • 批准号:
    22K16720
  • 财政年份:
    2022
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
  • 批准号:
    RGPIN-2018-04107
  • 财政年份:
    2022
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Discovery Grants Program - Individual
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
  • 批准号:
    RGPIN-2019-05674
  • 财政年份:
    2022
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
  • 批准号:
    22K12824
  • 财政年份:
    2022
  • 资助金额:
    $ 17.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了