Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
基本信息
- 批准号:10771467
- 负责人:
- 金额:$ 39.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
Regular exercise (physical activity) is the most effective intervention that promotes health and combats non-
communicable disease (NCD). However, our understanding of the molecule(s) responsible for the superb
benefits of exercise is obscure. The NIH Common Fund project “Molecular Transducers of Physical Activity
Consortium (MoTrPAC)” is a large-scale discovery study designed to understand the molecular responses to
exercise training, which has released the first batch of multi-omics data, including RNA-seq, Reduced
Representation Bisulfite Sequencing, proteomics, phosphoproteomics, acetylproteomics, and targeted and
untargeted metabolomics, from 5 tissues collected at different time points in rats following an acute bout of
endurance exercise. These endeavors have laid a solid foundation for elucidation of the molecular transducer of
physical activity. We have recently made significant progress in four areas, which poised us to explore these
data and elucidate the mechanism(s) in an unprecedented manner. Specifically, 1) We have obtained similar
time-course, transcriptomics data in 4 tissues in mice following acute and long-term endurance exercise and
developed machine learning capability for mining the multi-omics data for identification of regulatory factors that
mediate the exercise benefits; 2) We have perfected CRISPR/Cas9-mediated gene editing for generation of loss-
of-function knock-in mice as well as techniques to generate tissue-specific, inducible gain-of-function transgenic
mice; 3) We have established comprehensive phenotypic analysis in mice; and 4) We have had a successful
experience in elucidating the regulation and function of extracellular superoxide dismutase (EcSOD), a humoral
factor expressed in skeletal muscle and promoted by endurance exercise, in mediating the health benefits and
protection against diseases. We hypothesize that endurance exercise promotes expression and release of one
or more humoral factors from one or multiple tissues/organs, which is sufficient and necessary mediating the
health benefits of exercise. To this end, we propose
1) Identify candidate molecular transducers of physical activity by machine learning-based multi-omics modeling.
2) Generate loss-of-function knock-in and tissue-specific, gain-of-function transgenic mice using CRISPR/Cas9-
mediated gene editing and transgenesis.
3) Elucidate the role of the candidate molecular transducers of physical activity in health benefits of exercise.
The experimental design and model systems are both conceptually and technically innovative. The findings will
significantly improve the mechanistic understanding of exercise-induced adaptations with great potential impact
on the future development of therapeutics for NCD.
摘要
定期锻炼(体育活动)是促进健康和对抗非健康疾病的最有效干预措施。
传染病(NCD)。然而,我们对这些分子的理解,
运动的好处是模糊的。美国国立卫生研究院共同基金项目“身体活动的分子传感器
Consortium(MoTrPAC)是一项大规模的发现研究,旨在了解
运动训练,它已经发布了第一批多组学数据,包括RNA-seq,
代表亚硫酸氢盐测序、蛋白质组学、磷酸蛋白质组学、乙酰蛋白质组学以及靶向和
非靶向代谢组学,来自急性发作后大鼠在不同时间点收集的5种组织。
耐力训练这些工作为阐明分子转导子的功能奠定了基础。
体力活动。我们最近在四个领域取得了重大进展,使我们能够探讨这些问题。
以前所未有的方式收集数据并阐明机制。具体而言,1)我们已经获得了类似的
急性和长期耐力运动后小鼠4种组织中的时程、转录组学数据,
开发了机器学习能力,用于挖掘多组学数据,以识别
2)我们已经完善了CRISPR/Cas9介导的基因编辑,以产生损失-
功能缺失敲入小鼠以及产生组织特异性、可诱导的功能获得性转基因小鼠的技术
小鼠; 3)我们已经建立了全面的小鼠表型分析;和4)我们已经成功地
在阐明细胞外超氧化物歧化酶(EcSOD)的调节和功能方面的经验,
在骨骼肌中表达并通过耐力运动促进的因子,介导健康益处,
预防疾病。我们假设耐力运动促进了一个基因的表达和释放,
一个或多个组织/器官的一种或多种体液因子,这是充分和必要的介导的,
锻炼的健康益处。为此,我们建议
1)基于机器学习的多组学建模识别身体活动的候选分子转换器。
2)使用CRISPR/Cas9- 3产生功能缺失敲入和组织特异性功能获得转基因小鼠
介导的基因编辑和转基因。
3)阐明身体活动的候选分子转换器在运动的健康益处中的作用。
实验设计和模型系统在概念和技术上都是创新的。其成果将
显着提高对运动诱导适应的机制理解,具有巨大的潜在影响
关于NCD治疗方法的未来发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Yan其他文献
Zhen Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Yan', 18)}}的其他基金
Exercise-Induced Mitophagy In Hippocampal Neurons Against AD
运动诱导的海马神经元线粒体自噬对抗 AD
- 批准号:
10765466 - 财政年份:2022
- 资助金额:
$ 39.6万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10380087 - 财政年份:2021
- 资助金额:
$ 39.6万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10551274 - 财政年份:2021
- 资助金额:
$ 39.6万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10225076 - 财政年份:2021
- 资助金额:
$ 39.6万 - 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
- 批准号:
10413230 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
- 批准号:
10264175 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Cooperative Agreement
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Research Grant
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Research Grant
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
- 批准号:
2317077 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Fellowship
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
EU-Funded
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant