Diffuse microdamage in bone: Direct repair without remodeling
骨骼弥漫性微损伤:直接修复而不重塑
基本信息
- 批准号:8206602
- 负责人:
- 金额:$ 16.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAgingApoptosisAreaBackBiologicalBone MatrixBone RegenerationBone TissueBone remodelingCollagenDepositionDiffuseEngineeringExtracellular MatrixFailureFatigueFluorescenceFractureHealedHomeostasisImageImmunohistochemistryIn SituLifeLocationMaintenanceMeasuresMechanicsMediatingMethodsMicroscopicMineralsModelingNeprilysinOsteocalcinOsteoclastsOsteocytesPathway interactionsPhysiologicalPhysiologyPrincipal InvestigatorProcessProductionPropertyRaman Spectrum AnalysisRattusReactionReportingResearchScanning Acoustic MicroscopySeriesSiteSkeletonStaining methodStainsStructural ProteinTestingTimeTissuesX Chromosomebasebonebone celldentin matrix protein 1healingimprovedin vivoinorganic phosphatemineralizationnovelosteopontinpreventpublic health relevancerepairedresponseskeletalulna
项目摘要
DESCRIPTION (provided by applicant): Microscopic damage is the microstructural consequence of wear and tear (i.e., fatigue) in bone. Bone remodeling can repair the typical linear microcracks that have been reported in bone, and this capability is essential for maintenance of its mechanical integrity. However, recent studies demonstrate that linear microcracks are just one of a range of matrix damage types that result from fatigue in bone. Most other matrix damage processes cause "small crack"-type damage, which are collectively referred to as "diffuse" damage. Diffuse damage is widely observed in the aging skeleton, and like typical linear microcracks it degrades bone material properties, yet the relevance of diffuse damage to bone physiology is not known. Our preliminary studies show that diffuse damage does not activate bone remodeling as do typical microcracks, nor does it cause the local osteocyte apoptosis now known to control the subsequent remodeling response. Rather, osteocytes at diffuse damage sites appear to remain quite healthy. In view of recent discoveries showing osteocytes actively regulate their surrounding matrix, particularly by regulating local mineral deposition, we propose that bone possesses a matrix level "self-repair" mechanism that is distinct from osteoclast-based remodeling. In this process, small ("diffuse") crack damage undergoes direct repair through the actions of osteocytes. We will use the rat in vivo ulnar bending fatigue model to address this question in vivo. In the first studies, discrete regions of diffuse matrix damage will be induced. Changes in the mechanical properties of local regions of diffuse damage and of corresponding areas in non-fatigued bone will be measured using Scanning Acoustic Microscopy. Quantitative back-scattered imaging will be used to examine mineral matrix integrity and the local mineral content in diffuse damage regions, and Raman spectroscopy used to characterize crystal size and mineral and organic composition. In the second series of studies, we will determine whether fatigue selectively elicits changes in the expression of local mineralization-regulating molecules by osteocytes within diffuse damage sites, consistent with a restore local matrix mineral integrity in diffuse damage regions.
PUBLIC HEALTH RELEVANCE: It has long been known that bone remodeling can remove and repair the typical microscopic (~100 5m size) cracks that result from wear and tear (i.e., mechanical fatigue) in bone, and thereby help restore strength and prevent fracture. However, there are other types of fatigue damage in the matrix of bone, comprised of much smaller cracks (1-2 5m or smaller) that also weaken bone substantially. We recently discovered that these small cracks are not dealt with by bone remodeling. Thus, their healing must involve other biological mechanisms. In these studies, we will test whether these very small cracks in bone can heal over time through another mechanism than does not involve bone remodeling, and we will also examine how osteocytes, the bone cells that live buried within the bone matrix, might participate in the direct repair of these very small cracks and prevent bone fragility.
描述(由申请人提供):微观损坏是磨损和撕裂的微观结构后果(即,疲劳)。骨重建可以修复已报道的骨中典型的线性微裂纹,这种能力对于维持其机械完整性至关重要。然而,最近的研究表明,线性微裂纹只是一系列的基质损伤类型,导致在骨疲劳。大多数其他基体损伤过程导致“小裂纹”型损伤,统称为“扩散”损伤。在老化骨骼中广泛观察到弥散性损伤,并且像典型的线性微裂纹一样,它降低了骨材料的性能,但弥散性损伤与骨生理学的相关性尚不清楚。我们的初步研究表明,弥漫性损伤不会像典型的微裂纹那样激活骨重建,也不会引起局部骨细胞凋亡,这是目前已知的控制随后的重建反应。相反,弥漫性损伤部位的骨细胞似乎保持相当健康。鉴于最近的发现表明骨细胞积极调节其周围的基质,特别是通过调节局部矿物质沉积,我们提出,骨具有基质水平的“自我修复”机制,这是从破骨细胞为基础的重塑不同。在这个过程中,小的(“扩散”)裂纹损伤通过骨细胞的作用进行直接修复。我们将使用大鼠在体尺骨弯曲疲劳模型来解决这个问题。在第一项研究中,将诱导离散区域的扩散基质损伤。将使用扫描声学显微镜测量弥漫性损伤局部区域和非疲劳骨中相应区域的机械性能变化。定量背散射成像将用于检查矿物基质的完整性和扩散损伤区域的局部矿物含量,拉曼光谱用于表征晶体大小以及矿物和有机成分。在第二系列的研究中,我们将确定疲劳是否选择性地elerminate局部矿化调节分子的表达变化的骨细胞内弥漫性损伤部位,符合恢复局部基质矿物质的完整性在弥漫性损伤区域。
公共卫生关系:人们早就知道,骨重建可以去除和修复由磨损引起的典型的微观(约100 5 m大小)裂纹(即,机械疲劳),从而帮助恢复强度并防止骨折。然而,在骨基质中存在其他类型的疲劳损伤,包括小得多的裂纹(1- 2.5米或更小),这些裂纹也大大削弱了骨。我们最近发现,这些小裂缝不会通过骨重建来处理。因此,它们的愈合必须涉及其他生物机制。在这些研究中,我们将测试骨骼中这些非常小的裂缝是否可以通过另一种机制随着时间的推移而愈合,而不是不涉及骨骼重塑,我们还将研究骨细胞,生活在骨基质中的骨细胞,如何参与这些非常小的裂缝的直接修复并防止骨骼脆弱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MITCHELL B SCHAFFLER其他文献
MITCHELL B SCHAFFLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MITCHELL B SCHAFFLER', 18)}}的其他基金
Renewed bone remodeling after pausing long-term bisphosphonate use: Does it replace regions of impaired bone quality and restore mechanical integrity?
暂停长期使用双膦酸盐后重新进行骨重塑:它是否可以替代骨质量受损的区域并恢复机械完整性?
- 批准号:
10656954 - 财政年份:2023
- 资助金额:
$ 16.81万 - 项目类别:
Diverse effects of somatopause and aging on the skeleton
躯体更年期和衰老对骨骼的多种影响
- 批准号:
10409076 - 财政年份:2018
- 资助金额:
$ 16.81万 - 项目类别:
Diverse effects of somatopause and aging on the skeleton
躯体更年期和衰老对骨骼的多种影响
- 批准号:
9903190 - 财政年份:2018
- 资助金额:
$ 16.81万 - 项目类别:
Structural, Molecular and Functional Specialization in Osteocyte Mechanosensing
骨细胞机械传感的结构、分子和功能专业化
- 批准号:
10394277 - 财政年份:2018
- 资助金额:
$ 16.81万 - 项目类别:
Structural, Molecular and Functional Specialization in Osteocyte Mechanosensing
骨细胞机械传感的结构、分子和功能专业化
- 批准号:
9921195 - 财政年份:2018
- 资助金额:
$ 16.81万 - 项目类别:
Diverse effects of somatopause and aging on the skeleton
躯体更年期和衰老对骨骼的多种影响
- 批准号:
10399513 - 财政年份:2018
- 资助金额:
$ 16.81万 - 项目类别:
Diffuse microdamage in bone: Direct repair without remodeling
骨骼弥漫性微损伤:直接修复而不重塑
- 批准号:
8032041 - 财政年份:2011
- 资助金额:
$ 16.81万 - 项目类别:
Structural, Molecular, and Functional Specialization in Osteocyte Mechanosensing
骨细胞机械传感的结构、分子和功能专业化
- 批准号:
8139065 - 财政年份:2010
- 资助金额:
$ 16.81万 - 项目类别:
Structural, Molecular, and Functional Specialization in Osteocyte Mechanosensing
骨细胞机械传感的结构、分子和功能专业化
- 批准号:
8325440 - 财政年份:2010
- 资助金额:
$ 16.81万 - 项目类别:
Structural, Molecular, and Functional Specialization in Osteocyte Mechanosensing
骨细胞机械传感的结构、分子和功能专业化
- 批准号:
8713935 - 财政年份:2010
- 资助金额:
$ 16.81万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 16.81万 - 项目类别:
Research Grant