Integrative Pipeline for Analysis & Translational Application of TCGA Data (GDAC)
综合分析管道
基本信息
- 批准号:8327267
- 负责人:
- 金额:$ 158.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-29 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureBioinformaticsBiologicalBiological MarkersBiologyBiometryCancer CenterCancer PatientClinicalClinical ResearchConfidentialityCountryDataData AnalysesDevelopmentEnsureFundingGenomeGoalsHumanImageryInstitutionInstructionLeadMalignant NeoplasmsMolecular ProfilingParticipantPathologyPathway AnalysisResearch PersonnelSoftware EngineeringSourceSpecimenSystemSystems BiologyTechnologyThe Cancer Genome AtlasTimeUniversity of Texas M D Anderson Cancer CenterWorkbasebiological systemsbiosignaturecancer Biomedical Informatics Gridcancer diagnosiscancer therapycancer typecomputer based Semantic Analysisdata integrationdesignfollow-upinnovationmembernovelprogramssoftware developmenttumoruser-friendly
项目摘要
The proposed Genome Data Analysis Center B (GDAC B) will work cooperatively with other GDACs funded
by The Cancer Genome Atlas (TCGA) project to (i) develop an innovative, integrative pipeline for systems-
level analysis of TCGA's molecular profiling data on many different types of human tumors and (ii) apply that
pipeline and its component modules to TCGA data to address important biological and clinical questions. An
overarching goal is to 'personalize' the management of patients' cancers on the basis of new tumor
biomarkers and biosignatures. For the first time, it is easier to generate millions of data points on tumors than
to analyze or interpret those data, hence the bioinformatic challenge is formidable. The pipeline will be
constructed using the Agile software development paradigm and semantic web query architecture. It will be
based on novel algorithms and modules developed by participants in the GDAC. Included will be modules for
data integration, data visualization, pathway analysis, and systems biological interpretation, all designed to
be user-friendly for the bench researcher and clinician. Those modules will be interfaced with additional ones
developed by other GDACs, All development will adhere to standards of TCGA and the Cancer Biomedical
Informatics Grid (caBIG) and will provide controlled access to ensure confidentiality of personally identifiable
data. The proposed GDAC team brings to this project expertise in bioinformatics, biostatistics, software
engineering, high-throughput molecular profiling technologies, systems-oriented biology, biomarker studies,
pathology, and clinical research. The three co-PIs (for bioinformatics, systems biology, and clinical research)
have each participated actively in TCGA since its inception, as have other members of the team, including
the lead software engineer. A major strength is the University of Texas M. D. Anderson Cancer Center
(MDACC) as an institution. MDACC has been, and presumably will continue to be, the largest source of
tumor specimens for TCGA. As one of the country's foremost cancer centers, with by far the largest cancer
clinical research program, MDACC has unparalleled expertise for follow up on medically important leads that
result from the development and application of the pipeline to TCGA data.
拟议的基因组数据分析中心B (GDAC B)将与其他GDAC合作
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GORDON B. MILLS其他文献
GORDON B. MILLS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GORDON B. MILLS', 18)}}的其他基金
Project 1: High Grade Cancers: Capitalizing on PARPness in Ovarian Carcinoma
项目 1:高级别癌症:利用 PARPness 治疗卵巢癌
- 批准号:
10005294 - 财政年份:2017
- 资助金额:
$ 158.71万 - 项目类别:
Project 1: High Grade Cancers: Capitalizing on PARPness in Ovarian Carcinoma
项目 1:高级别癌症:利用 PARPness 治疗卵巢癌
- 批准号:
10251114 - 财政年份:2017
- 资助金额:
$ 158.71万 - 项目类别:
Role of Rab25 and its Effectors in Breast Cancer Bioengenerics
Rab25 及其效应子在乳腺癌生物工程中的作用
- 批准号:
7962741 - 财政年份:2010
- 资助金额:
$ 158.71万 - 项目类别:
Modeling response to P13K Targeted Therapies
对 P13K 靶向治疗的反应进行建模
- 批准号:
8181915 - 财政年份:2010
- 资助金额:
$ 158.71万 - 项目类别:
P4 - Pers. Therapy for High-Grade Ovarian Cancer: Targeting PI3Kness & BRCAne
P4-个人。
- 批准号:
7961946 - 财政年份:2010
- 资助金额:
$ 158.71万 - 项目类别:
Modeling response to P13K Target Therapies
对 P13K 靶向治疗的反应进行建模
- 批准号:
8181894 - 财政年份:2010
- 资助金额:
$ 158.71万 - 项目类别:
Integrative Pipeline for Analysis & Translational Application of TCGA Data (GDAC)
综合分析管道
- 批准号:
7788997 - 财政年份:2009
- 资助金额:
$ 158.71万 - 项目类别:
Integrative Pipeline for Analysis & Translational Application of TCGA Data (GDAC)
综合分析管道
- 批准号:
7942759 - 财政年份:2009
- 资助金额:
$ 158.71万 - 项目类别:
Integrative Pipeline for Analysis & Translational Application of TCGA Data (GDAC)
综合分析管道
- 批准号:
8123272 - 财政年份:2009
- 资助金额:
$ 158.71万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 158.71万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 158.71万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant














{{item.name}}会员




