Uncovering the mechanism of OGT substrate recognition and membrane localization
揭示OGT底物识别和膜定位的机制
基本信息
- 批准号:8487250
- 负责人:
- 金额:$ 5.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylglucosamineAffectAffinityAlzheimer&aposs DiseaseBindingBinding ProteinsBiochemicalBiological AssayBiological ModelsBreast Cancer CellCatalysisCell membraneCell modelCell physiologyCellsCellular MembraneCentrifugationChromatinDetectionDiabetes MellitusDiseaseDissectionEnvironmentEnzyme Inhibitor DrugsEnzyme InhibitorsEnzymesFoundationsFutureGleanGlucoseGoalsGrowthHumanHuman Cell LineIncubatedIndividualInsulin Signaling PathwayKineticsKnowledgeLeadLearningLengthLinkMalignant NeoplasmsMapsMeasurementMembraneMethodologyMethodsMicroscopicModelingModificationMonitorMutateMutationNon-Insulin-Dependent Diabetes MellitusO-GlcNAc transferasePathway interactionsPeptidesPeripheralPoint MutationProcessProtein GlycosylationProtein IsoformsProtein MicrochipsProtein Profiling MicroarraysProtein RegionProteinsProtocols documentationPublic HealthRecruitment ActivityReportingResearchResearch ProposalsRoleSchemeSeriesSerineSiteStimulusStructureSubstrate InteractionTechniquesTestingThermodynamicsThreonineTransfectionWalkersWorkbasebiochemical modelcancer cellcellular targetingenzyme activityenzyme structureextracellularglycosylationhuman diseasein vitro Assayin vivoinhibitor/antagonistinsightinsulin signalingmembermutantnovelpreventresearch studyscreeningsugartooltumor growth
项目摘要
When glucose (sugar) is present in high levels in cells, it is re-directed into a pathway that leads to the stimulation of an enzyme which is responsible for the addition of 2-N-acetylglucosamine (O-GlcNAc) to over 1,000 proteins in the cell. The correct activity of this enzyme (O-GlcNAc transferase or OGT) is critical for controlling the ability of a cell to respond to its environment and prevent aberrant growth and proliferation. The function of this enzyme has been linked to proper insulin signaling and diabetes, cancer and Alzheimer's disease. Recently it has been shown that the activity of OGT is increased in breast cancer cells. Reduction of enzyme levels and its activity by either biochemical methods or an OGT-specific inhibitor lead to an inhibition of tumor growth and decreased cancer cell invasion. The long term goal of the proposed is to characterize the mechanism of OGT function; details of which are critical for the treatment of the cellular processes and diseases it has been linked to.
The objectives of this proposal are to 1) develop a biochemical model of OGT function 2) search for OGT substrates using protein microarrays and 3) examine the role of OGT as a peripheral membrane binding protein. In order to develop a biochemical model of OGT function, the recently solved crystal structure of the enzyme will be utilized to mutate regions of the protein that affect its ability to properly recognize its cellular targets. With this information, much can be learned about the mechanism that OGT utilizes to differentially glycosylate proteins in the cell. To expand the knowledge of the cellular targets (and the processes those targets are responsible for) of OGT, a microscopic array that contains over 9000 human proteins will be incubated with OGT and its mutants. After detection of the proteins that have been glycosylated, a comprehensive map of OGT targets can be built. This map can be used, in the future, to selectively inhibit glycosylation of a subset of OGT targets. During insulin signaling, OGT is effectively recruited to the inner membrane of cells where it acts on members of the insulin signaling pathway. The mechanism of OGT's recruitment / binding to the cell membrane remains poorly understood. A series of biochemical and cell-based methods will be employed to determine the particular membrane components that OGT binds to and which region of the enzyme is responsible for this action. Taken together, the objectives in this proposal and the methods used to achieve them will greatly enhance our knowledge of OGT's glycosylation mechanism.
当葡萄糖(糖)在细胞中以高水平存在时,它被重新引导到导致刺激酶的途径中,该酶负责将2-N-乙酰葡糖胺(O-GlcNAc)添加到细胞中的1,000多种蛋白质中。这种酶(O-GlcNAc转移酶或OGT)的正确活性对于控制细胞对其环境的反应能力和防止异常生长和增殖至关重要。这种酶的功能与适当的胰岛素信号传导和糖尿病,癌症和阿尔茨海默病有关。最近已经表明,乳腺癌细胞中OGT的活性增加。通过生物化学方法或OGT特异性抑制剂降低酶水平及其活性可抑制肿瘤生长并降低癌细胞侵袭。所提出的长期目标是表征OGT功能的机制;其细节对于治疗与其相关的细胞过程和疾病至关重要。
本研究的目的是:1)建立OGT功能的生物化学模型; 2)利用蛋白质微阵列寻找OGT底物; 3)研究OGT作为外周膜结合蛋白的作用。为了开发OGT功能的生物化学模型,最近解决的酶的晶体结构将被用来突变影响其正确识别其细胞靶点的能力的蛋白质区域。有了这些信息,可以了解更多关于OGT利用差异糖基化细胞中蛋白质的机制。为了扩展OGT的细胞靶点(以及这些靶点负责的过程)的知识,将含有超过9000种人类蛋白质的显微阵列与OGT及其突变体一起孵育。在检测到已经糖基化的蛋白质后,可以构建OGT靶标的综合图谱。该图谱在未来可用于选择性抑制OGT靶点亚组的糖基化。在胰岛素信号传导过程中,OGT被有效地募集到细胞内膜,在那里它作用于胰岛素信号传导途径的成员。OGT募集/结合细胞膜的机制仍然知之甚少。将采用一系列生物化学和基于细胞的方法来确定OGT结合的特定膜组分以及酶的哪个区域负责该作用。综上所述,本提案中的目标和用于实现这些目标的方法将大大提高我们对OGT糖基化机制的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodrigo Fermin Ortiz-Meoz其他文献
Rodrigo Fermin Ortiz-Meoz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodrigo Fermin Ortiz-Meoz', 18)}}的其他基金
Uncovering the mechanism of OGT substrate recognition and membrane localization
揭示OGT底物识别和膜定位的机制
- 批准号:
8252500 - 财政年份:2012
- 资助金额:
$ 5.22万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 5.22万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 5.22万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 5.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists