Effectiveness of Robot-Assisted Hand Movement Training after Stroke

机器人辅助中风后手部运动训练的有效性

基本信息

项目摘要

DESCRIPTION (provided by applicant): The broad, long-term, scientific objective of this project is to identify the behavioral and neuroanatomical factors that determine the efficacy of hand movement training after stroke. An important societal impact of achieving this objective will be the design of more effective robotic rehabilitation exercise technology, which will allow people with a stroke to increase their movement recovery beyond that possible with current approaches. The working hypothesis is that robot-assisted movement training following stroke is most effective if it promotes 1) effortful motor output, which produces 2) correlated, appropriate, sensations at the joints, muscles, and skin. Further, it is hypothesized that the amount of hand movement recovery that is possible with such robotic exercise is limited by 1) how much of the main outflow tract from the brain to the hand (i.e. the corticospinal tract, CST) is spared, 2) integrity of sensory processing, and 3) the cumulative history of previous movement practice. These hypotheses will be tested in a series of experiments with a robotic device that assists in grasping objects as the user works daily at home through a library of engaging video games. Aim 1 is to define the benefit of correlated sensory motor activity in robot-assisted movement training. Is it beneficial to receive robot assistance that enhances the sensations experienced during training? A robotic device will help participants to practice grasping movements that they can initiate but normally could not complete, thereby intensifying joint, muscle, and cutaneous sensation. The improvements in motor function caused by this training technique will be compared with improvements when the robot does not help with movement. Aim 2 is to define the benefit of increased motor output levels in robot-assisted movement training. Assisting movements with a robotic device as in Aim 1 can cause people to slack, decreasing their force output. By using advanced robot control software, this aim will test if training with increased relative force levels is more effective. Aim 3 is to identify the effect of patient-specific characteristics on the effectiveness of robot-assisted training. The versions of robot-assisted training to be tested in Aims 1 and 2 presume specific neural resources for optimal effect. Is it possible to predict who will benefit most from different forms of robot-assisted hand exercise? For both Aims 1 and 2, all participants' finger rehabilitation history will be measured starting within 2 weeks of stroke onset using a wearable sensor, and sensory function and the extent of CST damage will be measured when training begins, 3-6 months later. It is hypothesized that availability of CST, sensory function, and history of previous exercise will predict the response to different forms of robotic training.
描述(申请人提供):该项目的广泛、长期、科学的目标是确定决定中风后手运动训练效果的行为和神经解剖学因素。实现这一目标的一个重要社会影响将是设计更有效的机器人康复练习技术,这将使中风患者能够增加他们的运动恢复,而不是目前的方法。工作假设是,中风后由机器人辅助的运动训练最有效,前提是它能促进努力的运动输出,从而在关节、肌肉和皮肤产生相关的、适当的感觉。此外,假设通过这种机器人练习可能的手运动恢复量受限于1)从大脑到手的主要流出束(即,皮质脊髓束,CST)的保留程度,2)感觉处理的完整性,以及3)先前运动练习的累积历史。这些假设将在一系列实验中得到验证,该机器人设备在用户每天在家通过一系列引人入胜的视频游戏库工作时,帮助抓取物体。目标1是确定相关感觉运动活动在机器人辅助运动训练中的益处。接受机器人的帮助以增强训练期间的感觉是否有益?机器人设备将帮助参与者练习他们可以发起但通常无法完成的抓取动作,从而增强关节、肌肉和皮肤的感觉。这种训练技术带来的运动功能的改善将与机器人不帮助运动时的改善进行比较。目标2是确定在机器人辅助运动训练中增加运动输出水平的好处。像在目标1中那样,用机器人设备辅助移动会导致人们松懈,减少他们的力量输出。通过使用先进的机器人控制软件,这一目标将测试增加相对力量水平的训练是否更有效。目标3是确定患者的特定特征对机器人辅助训练的有效性的影响。在AIMS 1和AIMS 2中测试的机器人辅助训练版本假定特定的神经资源以达到最佳效果。有可能预测谁将从不同形式的机器人辅助手部练习中受益最多吗?对于AIMS 1和AIMS 2,所有参与者的手指康复史都将在中风发作后2周内使用可穿戴传感器进行测量,并将在3-6个月后的训练开始时测量感觉功能和CST损伤程度。假设CST的可用性、感觉功能和既往锻炼史将预测对不同形式的机器人训练的反应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Jay Reinkensmeyer其他文献

David Jay Reinkensmeyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Jay Reinkensmeyer', 18)}}的其他基金

EFFECTIVENESS OF ROBOT-ASSISTED HAND MOVEMENT TRAINING AFTER STROKE
中风后机器人辅助手部运动训练的有效性
  • 批准号:
    10643069
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
EFFECTIVENESS OF ROBOT-ASSISTED HAND MOVEMENT TRAINING AFTER STROKE
中风后机器人辅助手部运动训练的有效性
  • 批准号:
    9925839
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
EFFECTIVENESS OF ROBOT-ASSISTED HAND MOVEMENT TRAINING AFTER STROKE
中风后机器人辅助手部运动训练的有效性
  • 批准号:
    10416019
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
Effectiveness of Robot-Assisted Hand Movement Training after Stroke
机器人辅助中风后手部运动训练的有效性
  • 批准号:
    8248743
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
Effectiveness of Robot-Assisted Hand Movement Training after Stroke
机器人辅助中风后手部运动训练的有效性
  • 批准号:
    8044163
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
EFFECTIVENESS OF ROBOT-ASSISTED HAND MOVEMENT TRAINING AFTER STROKE
中风后机器人辅助手部运动训练的有效性
  • 批准号:
    9750290
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
Effectiveness of Robot-Assisted Hand Movement Training after Stroke
机器人辅助中风后手部运动训练的有效性
  • 批准号:
    7770284
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
Effectiveness of Robot-Assisted Hand Movement Training after Stroke
机器人辅助中风后手部运动训练的有效性
  • 批准号:
    8442318
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
INFLUENCE OF TIMING ON MOTOR LEARNING
时间对运动学习的影响
  • 批准号:
    8166937
  • 财政年份:
    2009
  • 资助金额:
    $ 28.92万
  • 项目类别:
ROBOTICS FOR REHABILITATION THERAPY
康复治疗机器人
  • 批准号:
    8166908
  • 财政年份:
    2009
  • 资助金额:
    $ 28.92万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了