Human tissue-engineered blood vessels using induced pluripotent stem cells
使用诱导多能干细胞构建人体组织工程血管
基本信息
- 批准号:8529043
- 负责人:
- 金额:$ 39.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffectAneurysmAnimalsAutologousBiological AssayBioreactorsBlood VesselsCanis familiarisCell Culture TechniquesCell Differentiation processCell TherapyCell physiologyCellsClinicalCollagenDevelopmentDiseaseDisease modelElasticityElastinElastin FiberEpigenetic ProcessFamily suidaeFutureGene ExpressionGenesHumanHuman bodyImmuneImmunosuppressionImplantIn VitroInterventionLeadLentivirus VectorMechanicsMicroRNAsMicrofilamentsModelingModificationNude RatsOperative Surgical ProceduresPatientsPerformancePersonsPlayPolyglycolic AcidProductionPropertyProteinsRattusResearchResearch PersonnelResistanceRodent ModelRoleSafetySiteSmooth Muscle MyocytesSomatic CellSourceStenosisSurgical suturesTechnologyTeratomaTestingTherapeuticTissue EngineeringTissuesTransgenesUltrasonographyVascular DiseasesVascular Graftbasecell typeclinical applicationcrosslinkdisease mechanisms studyfollow-uphuman embryonic stem cellhuman tissueimplantationimprovedin vivoin vivo Modelinduced pluripotent stem cellinhibitor/antagonistinterestmortalitynonhuman primatepluripotencypressurepublic health relevancerecombinaseresponsescaffoldself-renewaltoolvasoconstriction
项目摘要
DESCRIPTION (provided by applicant): Vascular disease, caused by the blockage of blood vessels, is the largest cause of mortality in the developed world. Autologous or synthetic vascular grafts are used in treating this disease. However, some patients either lack suitable autologous tissue or cannot receive synthetic grafts due to the small size of target vessels. Tissue-engineered blood vessels (TEBVs) grown using vascular smooth muscle cells (SMCs) isolated from primary tissue hold great potential as tools for surgical replacement of the affected
vessels in these patients. However, the development of autologous TEBVs for clinical application using SMCs has been hampered by limited accessibility to patient vascular SMCs, rapid loss of SMC differentiation in cell culture and limited ability of primary SMCs to expand. Thus, it is of great interest to establish a human cell-based model that provides an abundant and renewable source of functional SMCs for the establishment of TEBVs. A renewable source of human cells can be generated by human induced pluripotent stem cells (hiPSCs), which resemble human embryonic stem cells (hESCs) and can be derived from a person's own somatic cells by forced gene expression. Both hiPSCs and hESCs can self-renew and differentiate into virtually every cell type in the human body including functional vascular SMCs, providing ideal cell sources for generating TEBVs to treat vascular diseases. We recently established hiPSC lines and derived unlimited amounts of highly homogeneous functional vascular SMCs from hiPSCs (hiPSC-SMCs) and hESCs (hESC-SMCs). As the potential reactivation of reprogramming transgenes in these iPSCs could ultimately affect their safety as therapy and utility in disease modeling, we will generate and validate transgene-free hiPSC lines by using Cre recombinase and then derive and characterize hiPSC-SMCs from these transgene-free hiPSC lines. TEBVs typically lack elastin (ELN), which is essential to mechanical properties of blood vessels, providing recoil and resistance to aneurysm and dilation. Since we have shown that inhibition of microRNA-29a (miR-29a) markedly increases the expression of ELN, crosslinking of ELN fiber and distensibility of TEBVs derived from primary SMCs, we will generate TEBVs using hiPSC-SMCs and hESC-SMCs in the presence of a miR-29a inhibitor and then determine the suture retention strength, burst pressure, collagen content, ELN content, and mechanical properties of TEBVs. To investigate the function of SMC-derived TEBVs in vivo we will implant TEBVs as aortic interpositional grafts in nude rats. We choose the rat model since other preferred large animals (dog or pig) might reject the human tissue even with immunosuppression due to a significant xenogenic response. Although a non-human primate model is not appropriate for a first in vivo study of such new hiPSC technology, it could be used in the future with immunosuppression as a follow-up model if the rodent model succeeds. We will test the hypothesis that TEBVs derived from hiPSC-SMCs and hESC-SMCs possess suitable properties for implantation in vitro and then remain mechanically stable in a rat aortic model in vivo.
描述(由申请人提供):由血管堵塞引起的血管疾病是发达国家最大的死亡原因。自体或合成血管移植物用于治疗这种疾病。然而,一些患者要么缺乏合适的自体组织,要么由于靶血管尺寸小而无法接受合成移植物。利用从原代组织中分离的血管平滑肌细胞(SMC)培养的组织工程血管(TEBV)具有很大的潜力,可作为受影响的手术替代工具。
这些患者的血管。然而,使用SMC的用于临床应用的自体TEBV的开发受到患者血管SMC的有限可及性、细胞培养物中SMC分化的快速丧失和原代SMC扩增能力有限的阻碍。因此,建立一种基于人细胞的模型是非常有意义的,该模型为TEBV的建立提供了丰富且可再生的功能性SMC来源。人细胞的可再生来源可以由人诱导多能干细胞(hiPSC)产生,其类似于人胚胎干细胞(hESC)并且可以通过强制基因表达源自人自身的体细胞。hiPSC和hESC都可以自我更新并分化成人体中几乎所有的细胞类型,包括功能性血管SMC,为产生TEBV治疗血管疾病提供了理想的细胞来源。我们最近建立了hiPSC系,并从hiPSC(hiPSC-SMC)和hESC(hESC-SMC)衍生出无限量的高度同质的功能性血管SMC。由于这些iPSC中重编程转基因的潜在再活化可能最终影响其作为治疗的安全性和在疾病建模中的效用,我们将通过使用Cre重组酶产生和验证无转基因的hiPSC系,然后从这些无转基因的hiPSC系衍生和表征hiPSC-SMC。TEBV通常缺乏弹性蛋白(ELN),这对血管的机械性能至关重要,提供了对动脉瘤和扩张的反冲和抵抗力。由于我们已经表明抑制微小RNA-29 a(miR-29 a)显著增加ELN的表达、ELN纤维的交联和源自原代SMC的TEBV的扩张性,我们将在miR-29 a抑制剂存在下使用hiPSC-SMC和hESC-SMC产生TEBV,然后确定TEBV的缝合线保持强度、破裂压力、胶原蛋白含量、ELN含量和机械性质。为了研究SMC衍生的TEBV在体内的功能,我们将TEBV作为主动脉间置移植物植入裸大鼠中。我们选择大鼠模型,因为其他首选的大型动物(狗或猪)可能会拒绝人体组织,即使有免疫抑制,由于显着的异种反应。尽管非人灵长类动物模型不适合用于这种新的hiPSC技术的首次体内研究,但如果啮齿动物模型成功,则其可以在未来与免疫抑制一起用作后续模型。我们将检验以下假设:源自hiPSC-SMC和hESC-SMC的TEBV具有适合于体外植入的性质,然后在体内大鼠主动脉模型中保持机械稳定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yibing Qyang其他文献
Yibing Qyang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yibing Qyang', 18)}}的其他基金
Modulation of heart function by Muscle LIM protein-mediated mechanotransduction
肌肉 LIM 蛋白介导的机械转导调节心脏功能
- 批准号:
10645223 - 财政年份:2022
- 资助金额:
$ 39.63万 - 项目类别:
Modulation of heart function by Muscle LIM protein-mediated mechanotransduction
肌肉 LIM 蛋白介导的机械转导调节心脏功能
- 批准号:
10503955 - 财政年份:2022
- 资助金额:
$ 39.63万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10457467 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10685550 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10298018 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10841794 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10622873 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10414459 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10636647 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10439796 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists