Infrastructure

基础设施

基本信息

项目摘要

Project Summary Mass spectrometry is based on fragmenting biological molecules into smaller pieces, and using the fragment masses as a fingerprint for identifying and quantifying bio-molecules. It is the dominant technology for studying active molecules in healthy and diseased tissue, and identifying protein targets and natural products for novel therapeutics. When the initial proposal Center for Computational Mass Spectrometry (CCMS) was submitted in 2007, the lack of adequate computational tools for analyzing mass spectrometry data was the the key bottleneck. With great success in enabling applications of new experimental techniques such as FTMS, ETD, HCD, top-down mass spectrometry, and many others, the mandate of CCMS continues to be the development of next generation computational technologies and to apply them to open experimental. In this proposal, we will capitalize on our recent results in diverse subfields of computational proteomics and will further branch into previously unexplored MS applications. We will focus specifically on bridging proteomics and genomics technologies using 6 technology research and development platforms. Specifically, we will (a) apply proteogenomics approach for the discovery of abberant cancer genes and analyzing antibody repertoires; (b) sequence natural antibiotics; (c) collate spectral data through spectral archives and networks; (d) develop universal tools for peptide identification; (e) develop tools for top-down proteomics; and, (f) analyzing multiplexed spectra. The technology platforms are driven by a multitude of collaborative biomedical studies where the use of CCMS developed tools is essential for their success. These studies include (a) unraveling the combinatorial histone code in human diseases; (b) a proteogenomics approach to studies of oral microbiome and polybacterial infections; (c) detecting inter-species chemical interactions; (d) developing a systems approach towards the therapeutic modulation of the acetylome ; (e) developing tools for monoclonal and polyclonal antibody sequencing; (f) development of breast cancer vaccines; (g) clinical cancer proteogenomics; (h) discovery of lantibiotics; (i) discovering proteomic biomarkers for drug toxicity in cancer patients; and, (j) identifying protein-protein interactions and post-translational modifications in cataractous lens. These projects require three-way collaborative efforts on a wide range of topics involving biomedical scientists, mass spectrometrists, and computational scientists from various institutions. CCMS will also train students and practicing scientists from all over the world in computational proteomics, and educate the proteomics community about modern computational mass spectrometry to encourage its wide adoption.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nuno Bandeira其他文献

Nuno Bandeira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nuno Bandeira', 18)}}的其他基金

Global proteomics mass spectrometry data sharing infrastructure
全球蛋白质组质谱数据共享基础设施
  • 批准号:
    10556184
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
MassIVE.quant: a curated and scalable community resource for quantitative proteomics
MassIVE.quant:定量蛋白质组学的精选且可扩展的社区资源
  • 批准号:
    10194582
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
MassIVE.quant: a curated and scalable community resource for quantitative proteomics
MassIVE.quant:定量蛋白质组学的精选且可扩展的社区资源
  • 批准号:
    9764743
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
MassIVE.quant: a curated and scalable community resource for quantitative proteomics
MassIVE.quant:定量蛋白质组学的精选且可扩展的社区资源
  • 批准号:
    10436166
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
Technology Research and Development Project 6: Analyzing multiplexed spectra
技术研发项目6:多重光谱分析
  • 批准号:
    8798320
  • 财政年份:
  • 资助金额:
    $ 26万
  • 项目类别:
Technology Research and Development Project 3: Spectral archives and spectral networks
技术研发项目3:光谱档案和光谱网络
  • 批准号:
    9303407
  • 财政年份:
  • 资助金额:
    $ 26万
  • 项目类别:
Infrastructure
基础设施
  • 批准号:
    9303404
  • 财政年份:
  • 资助金额:
    $ 26万
  • 项目类别:
Technology Research and Development Project 3: Spectral archives and spectral networks
技术研发项目3:光谱档案和光谱网络
  • 批准号:
    8930723
  • 财政年份:
  • 资助金额:
    $ 26万
  • 项目类别:
Infrastructure
基础设施
  • 批准号:
    8930720
  • 财政年份:
  • 资助金额:
    $ 26万
  • 项目类别:
Technology Research and Development Project 3: Spectral archives and spectral networks
技术研发项目3:光谱档案和光谱网络
  • 批准号:
    8798317
  • 财政年份:
  • 资助金额:
    $ 26万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了