Infrastructure
基础设施
基本信息
- 批准号:8798314
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsAntibioticsAntibody RepertoireArchitectureArchivesBiologicalBiological FactorsBiological MarkersCancer PatientCataractChemicalsClinicalCommunitiesComplexDataDevelopmentDrug toxicityEnvironmentFingerprintGenomicsHistone CodeInfectionInstitutionKnowledgeMalignant NeoplasmsMass Spectrum AnalysisMissionMonoclonal AntibodiesOncogenesPeptidesPost-Translational Protein ProcessingProteinsProteomicsResearch InfrastructureScientistServicesSoftware EngineeringSoftware ToolsStudentsSystemTechniquesTechnologyTestingTherapeuticTissuesTrainingbasebiomedical scientistbreast cancer vaccinecombinatorialcomputerized toolscostempoweredhuman diseasenext generationnovelnovel therapeuticsoral microbiomepolyclonal antibodyprotein protein interactionrepositoryresearch and developmentsoftware developmentsuccesstool
项目摘要
Project Summary
Mass spectrometry is based on fragmenting biological molecules into smaller pieces, and using the fragment
masses as a fingerprint for identifying and quantifying bio-molecules. It is the dominant technology for
studying active molecules in healthy and diseased tissue, and identifying protein targets and natural products
for novel therapeutics. When the initial proposal Center for Computational Mass Spectrometry (CCMS) was
submitted in 2007, the lack of adequate computational tools for analyzing mass spectrometry data was the
the key bottleneck. With great success in enabling applications of new experimental techniques such as
FTMS, ETD, HCD, top-down mass spectrometry, and many others, the mandate of CCMS continues to be
the development of next generation computational technologies and to apply them to open experimental. In
this proposal, we will capitalize on our recent results in diverse subfields of computational proteomics and will
further branch into previously unexplored MS applications. We will focus specifically on bridging proteomics
and genomics technologies using 6 technology research and development platforms.
Specifically, we will (a) apply proteogenomics approach for the discovery of abberant cancer genes and
analyzing antibody repertoires; (b) sequence natural antibiotics; (c) collate spectral data through spectral
archives and networks; (d) develop universal tools for peptide identification; (e) develop tools for top-down
proteomics; and, (f) analyzing multiplexed spectra. The technology platforms are driven by a multitude of collaborative biomedical studies where the use of CCMS developed tools is essential for their success. These
studies include (a) unraveling the combinatorial histone code in human diseases; (b) a proteogenomics
approach to studies of oral microbiome and polybacterial infections; (c) detecting inter-species chemical interactions; (d) developing a systems approach towards the therapeutic modulation of the acetylome ; (e)
developing tools for monoclonal and polyclonal antibody sequencing; (f) development of breast cancer vaccines; (g) clinical cancer proteogenomics; (h) discovery of lantibiotics; (i) discovering proteomic biomarkers
for drug toxicity in cancer patients; and, (j) identifying protein-protein interactions and post-translational modifications in cataractous lens. These projects require three-way collaborative efforts on a wide range of topics
involving biomedical scientists, mass spectrometrists, and computational scientists from various institutions.
CCMS will also train students and practicing scientists from all over the world in computational proteomics,
and educate the proteomics community about modern computational mass spectrometry to encourage its
wide adoption.
项目摘要
质谱法是基于将生物分子碎片化为更小的碎片,并使用碎片
质量作为指纹用于识别和量化生物分子。它是一种主导技术,
研究健康和患病组织中的活性分子,识别蛋白质靶点和天然产物
用于新的治疗方法。当计算质谱中心(CCMS)最初的提案是
在2007年提交的,缺乏足够的计算工具来分析质谱数据是
关键瓶颈。在新的实验技术的应用方面取得了巨大成功,
FTMS、ETD、HCD、自上而下的质谱法和许多其他方法,CCMS的任务仍然是
开发下一代计算技术,并将其应用于开放实验。在
这个建议,我们将利用我们最近在计算蛋白质组学的不同子领域的结果,并将
进一步分支到以前未开发的MS应用程序。我们将特别关注桥接蛋白质组学
基因组学技术,利用6个技术研发平台。
具体而言,我们将(a)应用蛋白质基因组学方法发现异常癌症基因,
分析抗体库;(B)对天然抗生素进行测序;(c)通过光谱分析整理光谱数据;
档案和网络;(d)开发肽鉴定的通用工具;(e)开发自上而下的工具
蛋白质组学;和(f)分析多重光谱。这些技术平台是由大量的合作生物医学研究驱动的,其中使用CCMS开发的工具对其成功至关重要。这些
研究包括(a)解开人类疾病中的组合组蛋白密码;(B)蛋白质基因组学
研究口腔微生物组和多细菌感染的方法;(c)检测物种间的化学相互作用;(d)开发乙酰组治疗调节的系统方法;(e)
开发单克隆和多克隆抗体测序工具;(f)开发乳腺癌疫苗;(g)临床癌症蛋白基因组学;(h)发现羊毛硫抗生素;(i)发现蛋白质组学生物标志物
用于癌症患者中的药物毒性;以及(j)鉴定白内障透镜中的蛋白质-蛋白质相互作用和翻译后修饰。这些项目需要三方在广泛的主题上进行合作
包括来自不同机构的生物医学科学家、质谱学家和计算科学家。
CCMS还将在计算蛋白质组学方面培训来自世界各地的学生和实践科学家,
并教育蛋白质组学社区关于现代计算质谱法,以鼓励其
广泛采用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuno Bandeira其他文献
Nuno Bandeira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuno Bandeira', 18)}}的其他基金
Global proteomics mass spectrometry data sharing infrastructure
全球蛋白质组质谱数据共享基础设施
- 批准号:
10556184 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
MassIVE.quant: a curated and scalable community resource for quantitative proteomics
MassIVE.quant:定量蛋白质组学的精选且可扩展的社区资源
- 批准号:
10194582 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
MassIVE.quant: a curated and scalable community resource for quantitative proteomics
MassIVE.quant:定量蛋白质组学的精选且可扩展的社区资源
- 批准号:
9764743 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
MassIVE.quant: a curated and scalable community resource for quantitative proteomics
MassIVE.quant:定量蛋白质组学的精选且可扩展的社区资源
- 批准号:
10436166 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Technology Research and Development Project 6: Analyzing multiplexed spectra
技术研发项目6:多重光谱分析
- 批准号:
8798320 - 财政年份:
- 资助金额:
$ 26万 - 项目类别:
Technology Research and Development Project 3: Spectral archives and spectral networks
技术研发项目3:光谱档案和光谱网络
- 批准号:
9303407 - 财政年份:
- 资助金额:
$ 26万 - 项目类别:
Technology Research and Development Project 3: Spectral archives and spectral networks
技术研发项目3:光谱档案和光谱网络
- 批准号:
8930723 - 财政年份:
- 资助金额:
$ 26万 - 项目类别:
Technology Research and Development Project 3: Spectral archives and spectral networks
技术研发项目3:光谱档案和光谱网络
- 批准号:
8798317 - 财政年份:
- 资助金额:
$ 26万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant














{{item.name}}会员




