On Site Mercury Remediation via Activated Fly Ash

通过活性粉煤灰进行现场汞修复

基本信息

项目摘要

DESCRIPTION (provided by applicant): Coal-fired power plants and burners are vital drivers of the U.S. economy-but they unfortunately produce substantial amounts of mercury (Hg) that are seriously harmful to human health, particularly linked to damages of the nervous system. Healthcare costs due to Hg exposure are estimated to be in the billions of dollars annually. New mercury-emission regulations (effective 2015) set a strict Hg cap of 1.3x10-2lb/GWh for existing electrical generating units (EGUs), which represents a challenge for the power-generation industry since 40% of today's units do not have adequate mercury pollution control equipment. The most reliable and widely utilized solution for mercury capture from power plants is exhaustive activated carbon injection (ACI), for which sorbent recurring costs are at least $5,000 per pound of Hg removed. The development of a new, cost-effective Hg-capture technology is crucial to mitigate human health risks and associated national healthcare costs, and to control industry/consumer costs under the upcoming regulations. Our preliminary work has produced a material that could replace the currently used injectable activated-carbon sorbents. The new material is more effective/efficient and potentially less expensive. Current mercury capture technologies have limitations that are largely due to physical sorption and do not address core problems of permanent mercury capture. We propose a technology that overcomes these limitations with materials that chemically bind mercury and offer the flexibility of safe disposal. The overall goal of this multi-phase SBIR project is to develop, prototype, and commercialize a proprietary gaseous pollutant capture technology that can be retrofitted to existing coal-fired facilities and incorporated into new ones. The on-demand Hg-capture technology is based on state-of-the-art material-i.e., a reprocessed fly ash byproduct that is reformed into a high-grade Hg oxidizing material via an innovative surface treatment. Our preliminary work has shown that this modified fly ash achieves exceptionally high levels of Hg removal. To fully establish the feasibility of this novel approach, Pollution Control Technologies, LLC (PCTech) will pursue the following Phase I Aims: 1) Demonstrate the feasibility of fly ash activated with pyridinium tribromides for mercury chemisorption; 2) Establish the Hg capture efficiency of the developed PTB activated fly ash on a pilot-scale combustion unit; and 3) Validate Hg disposal through HgBr2 extraction from saturated activated fly ash. Phase I support will allow the PCTech research team to obtain a complete experimental dataset related to production/implementation of fly ash-based material that will permit an accurate cost assessment and will validate the new Hg capture technology. Follow-on Phase II funds will be used to carry out a large-scale mercury capture project at a power plant facility and to complete an economic analysis of the technology. This will set the stage for the development of commercial-grade Hg capture technology and full-scale installations.
描述(由申请人提供):燃煤发电厂和燃烧器是美国经济的重要驱动力,但不幸的是,它们产生大量的汞(Hg),对人类健康严重有害,特别是与神经系统的损害有关。据估计,每年因接触汞而产生的医疗保健费用高达数十亿美元。新的汞排放法规(2015年生效)为现有发电机组设定了1.3x10-2lb/GWh的严格汞上限,这对发电行业构成了挑战,因为目前40%的发电机组没有足够的汞污染控制设备。发电厂汞捕获最可靠且广泛使用的解决方案是彻底活性炭喷射(ACI),其吸附剂的经常性成本为每去除一磅汞至少5,000美元。开发一种新的、具有成本效益的汞捕获技术对于减轻人类健康风险和相关的国家医疗保健成本,以及在即将出台的法规下控制行业/消费者成本至关重要。我们的初步工作已经产生了一种材料,可以取代目前使用的可注射活性炭吸附剂。新材料更有效/高效并且可能更便宜。目前的汞捕获技术有其局限性,主要是由于物理吸附,不能解决永久性汞捕获的核心问题。我们提出了一种技术,克服了这些限制与材料的化学结合汞,并提供安全处置的灵活性。 这个多阶段SBIR项目的总体目标是开发、原型化和商业化专有的气体污染物捕获技术,该技术可以改造现有的燃煤设施并纳入新的设施。按需汞捕获技术基于最先进的材料,即,一种经过再加工的飞灰副产品,通过创新的表面处理,将其转化为高品位的汞氧化材料。我们的初步工作表明,这种改性粉煤灰实现了非常高的汞去除水平。为了充分确定这种新方法的可行性,污染控制技术有限责任公司(PCTech)将追求以下第一阶段目标:1)证明用三溴化吡啶活化的飞灰对汞的化学吸附的可行性; 2)在中试燃烧装置上确定开发的PTB活化飞灰的汞捕获效率;(3)从饱和活化粉煤灰中提取HgBr_2处理汞。第一阶段的支持将使PCTech研究小组能够获得与粉煤灰基材料的生产/实施有关的完整实验数据集,从而能够进行准确的成本评估,并验证新的汞捕获技术。第二阶段后续资金将用于在发电厂设施开展大规模汞捕获项目,并完成对该技术的经济分析。这将为开发商业级汞捕获技术和全面安装奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaspars Krutkramelis其他文献

Kaspars Krutkramelis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaspars Krutkramelis', 18)}}的其他基金

On Site Mercury Remediation via Activated Fly Ash
通过活性粉煤灰进行现场汞修复
  • 批准号:
    9198223
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
On Site Mercury Remediation via Activated Fly Ash
通过活性粉煤灰进行现场汞修复
  • 批准号:
    9047367
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:

相似海外基金

Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
  • 批准号:
    23H05448
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了