mStroke: Mobile Technology for Post-Stroke Recurrence Prevention and Recovery
mStroke:用于中风后复发预防和恢复的移动技术
基本信息
- 批准号:8626740
- 负责人:
- 金额:$ 38.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdultAlgorithmsAppointmentAppointments and SchedulesAssisted Living FacilitiesBiomedical TechnologyCaregiversCaringClinicalClinical TrialsCodeCognitiveCollaborationsCommunicationCommunication impairmentComputer softwareDataData AnalysesData CompressionData SecurityDatabasesDevelopmentDevicesEnsureEnvironmentEquilibriumFoundationsFunctional disorderGaitGoalsHealthHealth Insurance Portability and Accountability ActHealth PersonnelHealth ProfessionalHealth ServicesHome environmentHospitalsImmuneImpairmentIndividualInpatientsInstitutionInstructionInterventionKnowledgeLearningLeftLegLength of StayLong-Term CareMeasurementMeasuresMedicalMissionMonitorMotionMotorMovementNational Institute of Biomedical Imaging and BioengineeringOutcomeOutpatientsPatient DischargePatient MonitoringPatientsPhasePhysical RehabilitationPhysical therapyPhysiciansPrincipal InvestigatorProcessPublic HealthRecoveryRecovery of FunctionRecurrenceRegistriesRehabilitation therapyReportingResearchRisk AssessmentSecureSecuritySolidSpeedStreamStrokeStroke preventionStudentsSupervisionSurvivorsSystemTechniquesTechnologyTestingTimeTrainingUnited StatesUnited States National Institutes of HealthVisitWireless TechnologyYangacute strokearmbasecostdata acquisitiondata exchangedisabilitydisorder later incidence preventionencryptionfall riskfollow-upgraduate studentimprovedmotor controlmultidisciplinaryoutcome forecastpost strokepublic health relevancerehabilitation managementsensorstroke recoverystroke rehabilitationtooltransmission processtreatment as usualundergraduate studentusability
项目摘要
Research Summary
We aim to develop a smart system, which will monitor and evaluate motor control, fall risk, and gait speed
of patients post stroke using wearable Bluetooth Low-Energy (BLE) devices. Stroke, the leading cause of
disability for adults, has a high cost in inpatient care and rehabilitation ($54 billion in 2010). To reduce the
cost and ultimately improve stroke-care outcomes, follow-up data is required to correlate successful
versus unsuccessful recovery and determine optimal interventions. However, this data is not currently
available due to difficulties involved in data acquisition and lack of centralized databanks once patients
are released from acute care hospitals. Our proposed system will evaluate recovery of post-stroke
patients after they leave the hospital, and will provide trustworthy customized activity analysis and
statistical interpretation to support health care providers in delivering improved health services beyond
usual stroke care. Our research is focused on developing a smart system that is practical, accurate,
secure, and effective. Thus, we anticipate that this system will have a significant impact on stroke
rehabilitation (intervention and research) and patients' long-term recovery.
Significance of Our Proposed System:
Post stroke functional recovery is enhanced by movement and activity practice. Providing health care
professionals with patient-specific post stroke movement and activity reports, beyond those directly
observed, will facilitate prescription of specific interventions and, over the long term, optimize patient
recovery. In summary, the benefits of our smart system have three folds:
1) Enhancing Acute Management: Immediately post stroke (e.g., 2-4 days), when physicians are actively
engaged in achieving patients' medical stability and beginning physical rehabilitation, our smart system
may be used to provide movement and activity information beyond that which is typically available in
usual care. This will enhance health providers' understanding of the magnitude of movement dysfunction
and support prescription of the optimal acute stroke rehabilitation setting.
2) Enhancing Acute Rehabilitation: Once patients are discharged from the acute or rehabilitation hospital
to home or assisted living environments, our smart system will provide objective movement and activity
health information. This phase of post stroke recovery is typically managed by patients and their
caregivers with occasional professional guidance (e.g., home health or outpatient visits). Physicians and
therapists will have access to previously unavailable real-time data, supporting efficient and effective
management strategies when patients are seen in regularly scheduled appointments.
3) Extending Care: At the end of rehab, when therapy is discontinued and physician appointments are
less frequent, our smart system will provide physicians with previously unavailable real-time data,
whereby medical and/or rehabilitation intervention may be triggered to support patients' optimal long-term
recovery.
The specific aims of this project are:
Aim 1: Efficient Data Acquisition and Reliable Data Transmission
Aim 2: Automated Motor Control Scoring, Fall Risk Assessment, and Gait Speed Measurements
Aim 3: Health Data Security
Aim 4: Demonstration of Patient Usability and Efficacy of mStroke
Student Involvement:
Our proposed smart system provides a dynamic learning environment for both undergraduate and
graduate students. Under the supervision of PD/PIs, the students will contribute to implement the
proposed algorithms and integrate them to develop the proposed automated post-stroke assessment tool.
Then, students will help to collect the testing data and validate the system. This will introduce both
undergraduate and graduate students to real-world challenges and excite them with the opportunity to do
research, especially in fields of smart health, physical therapy, data analysis, security, and data
compression.
研究综述
我们的目标是开发一个智能系统,该系统将监测和评估运动控制,跌倒风险和步态速度
中风后患者使用可穿戴蓝牙低功耗(BLE)设备。中风是导致
成年人的残疾,住院护理和康复费用很高(2010年为540亿美元)。减少
成本并最终改善卒中护理结果,需要随访数据将成功的
与不成功的恢复,并确定最佳干预措施。然而,这一数据目前并不
由于数据采集困难和缺乏集中式数据库,
从急症护理医院出院我们提出的系统将评估中风后的恢复情况。
患者离开医院后,将提供值得信赖的定制活动分析,
统计解释,以支持卫生保健提供者提供更好的卫生服务,
常规中风护理。我们的研究重点是开发一种实用、准确、
安全有效因此,我们预计该系统将对中风产生重大影响
康复(干预和研究)和患者的长期康复。
我们建议的系统的意义:
中风后的功能恢复通过运动和活动练习来增强。提供保健
专业人士与患者特定的中风后运动和活动报告,除了那些直接
观察,将促进处方的具体干预措施,并在长期内,优化患者
复苏总之,我们的智能系统的好处有三个方面:
1)加强急性管理:中风后立即(例如,2-4日),当医生积极
致力于实现患者的医疗稳定和开始身体康复,我们的智能系统
可用于提供运动和活动信息,
常规护理这将增强健康提供者对运动功能障碍程度的理解
和支持处方的最佳急性中风康复设置。
2)加强急性康复:一旦患者从急性或康复医院出院,
到家庭或辅助生活环境,我们的智能系统将提供客观的运动和活动
健康信息中风后恢复的这一阶段通常由患者及其家属管理。
护理人员偶尔进行专业指导(例如,家庭健康或门诊访问)。医生和
治疗师将能够访问以前无法获得的实时数据,
管理策略时,病人看到定期预约。
3)延长护理:在康复结束时,当治疗停止,医生预约,
我们的智能系统将为医生提供以前无法获得的实时数据,
由此可以触发医疗和/或康复干预以支持患者的最佳长期
复苏
该项目的具体目标是:
目标1:高效的数据采集和可靠的数据传输
目标2:自动运动控制评分、跌倒风险评估和步态速度测量
目标3:健康数据安全
目的4:证明mStroke的患者可用性和有效性
学生参与:
我们提出的智能系统提供了一个动态的学习环境,
研究生。在PD/PI的监督下,学生将为实施
提出的算法,并整合它们,以开发拟议的自动中风后评估工具。
然后,学生将帮助收集测试数据和验证系统。这将同时介绍
本科生和研究生的现实世界的挑战,并激发他们的机会,做
研究,特别是在智能健康,物理治疗,数据分析,安全和数据领域
压缩。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing a Predictive Tool for Hospital Discharge Disposition of Patients Poststroke with 30-Day Readmission Validation.
- DOI:10.1155/2021/5546766
- 发表时间:2021
- 期刊:
- 影响因子:1.5
- 作者:Cho J;Place K;Salstrand R;Rahmat M;Mansouri M;Fell N;Sartipi M
- 通讯作者:Sartipi M
Functional measurement post-stroke via mobile application and body-worn sensor technology.
- DOI:10.21037/mhealth.2019.08.11
- 发表时间:2019-01-01
- 期刊:
- 影响因子:0
- 作者:Fell, Nancy;True, Hanna H;Salstrand, Rebecca
- 通讯作者:Salstrand, Rebecca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy Lynn Tripp Fell其他文献
Nancy Lynn Tripp Fell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 38.47万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 38.47万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 38.47万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 38.47万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 38.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 38.47万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 38.47万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 38.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 38.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 38.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)