DATA SCIENCE RESEARCH
数据科学研究
基本信息
- 批准号:8910929
- 负责人:
- 金额:$ 152.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureAreaAwarenessBig DataBiologicalCardiovascular DiseasesCardiovascular systemClinical DataCloud ComputingCommunitiesCommunity ParticipationComplexDataData AggregationData SetDisciplineDiseaseElderlyFaceGene ProteinsGenomicsHealthIndividualJackson Heart StudyKnowledgeLiteratureLongevityMedicineMethodsModelingMolecularMolecular ProfilingOrganellesPathway interactionsPharmaceutical PreparationsPhenotypePhysiologicalProtein DynamicsProteinsProteomicsRecording of previous eventsResearchResearch InfrastructureResearch PersonnelResourcesScienceSolidStructureSystemTranslatingValidationanalytical toolbasecloud basedcohortcomputerized toolsdesignfederated computinginnovationnoveloutreachprotein metabolitespatiotemporaltext searchingtool
项目摘要
A critical challenge in Big Data science is the overall lack of data ahalysis platforms available for
transforming Big Data into biological knowledge. To address this challenge, we propose a set of
interconnected computational tools capable of organizing and analyzing heterogeneous data to support
combined inquiries and to de-convolute complex relationships embedded within large-scale data. We
demonstrate its utility with a cardiovascular-centric platform that is easily generalizable to similar efforts in
other disciplines. Our Center has designed a federated data architecture of existing resources
substantiated by a solid and growing user base, and innovations to elevate functionality. Novel
crowdsourcing and text-mining methods will extract the wealth of untapped knowledge embedded in
biomedical literature, and novel in-depth proteomics analytical tools will unprecedentedly elucidate
dynamic protein features. A key strength of our platform will be the rigorous validation using clinical data
from Jackson Heart Study and the Healthy Elderly Active Longevity (HEAL; Wellderly) cohorts. Our proposal
includes nine scientific aims that address three main focus areas: (i) we will build a new model platform that
amalgamates community-supported Big Data resources, enabling data annotations and collaborative
analyses; (ii) we will integrate molecular data with drug and disease information, both structured and
unstructured, for knowledge aggregation, and (iii) we will create on-the-cloud analytical and modeling tools
to power in-depth protein discoveries. Specifically, we will create a novel distributed query system and
cloud-based infrastructure that is capable of providing unified access to multi-omics datasets; we will
develop computational and crowdsourcing methods to systematically define relationships between genes,
proteins, diseases, and drugs from the literature, emphasizing cardiovascular medicine; we will rally
community participation and promote awareness of collaborative research through outreach and educational
games; we will create a platform to analyze and visualize multi-scale pathway models of genes, proteins,
and metabolites; we will develop tools and algorithms to mechanistically model spatiotemporal protein
networks in organelles and to. predict higher physiological phenotypes; and we will correlate individual
phenotypes, health histories, and multi-scale molecular profiles to examine cardiovascular disease
mechanisms. These tools will be implemented, delivered, and executed on the cloud infrastructure to
minimize the computational power required of users.
大数据科学面临的一个关键挑战是总体上缺乏可用于
将大数据转化为生物学知识。为了应对这一挑战,我们提出了一套
能够组织和分析异构数据的互连计算工具,
组合查询和去卷积嵌入在大规模数据中的复杂关系。我们
证明其与心血管中心平台的效用,该平台易于推广到类似的工作,
其他学科。我们的中心设计了现有资源的联合数据架构
通过稳固和不断增长的用户基础以及提升功能的创新来实现。小说
众包和文本挖掘方法将提取嵌入其中的未开发知识财富,
生物医学文献和新颖的深入蛋白质组学分析工具将前所未有地阐明
动态蛋白质特征我们平台的一个关键优势将是使用临床数据进行严格验证
来自杰克逊心脏研究和健康老年人积极长寿(HEAL; Wellderly)队列。我们的建议
包括九个科学目标,涉及三个主要重点领域:(i)我们将建立一个新的模型平台,
整合社区支持的大数据资源,实现数据注释和协作
分析;(ii)我们将整合分子数据与药物和疾病信息,结构化和
非结构化,用于知识聚合,以及(iii)我们将创建云分析和建模工具
为深入的蛋白质发现提供动力具体来说,我们将创建一个新的分布式查询系统,
基于云的基础设施,能够提供对多组学数据集的统一访问;我们将
开发计算和众包方法,系统地定义基因之间的关系,
蛋白质,疾病和药物的文献,强调心血管医学;我们将团结起来,
社区参与,并通过推广和教育提高对合作研究的认识
我们将创建一个平台来分析和可视化基因,蛋白质,
和代谢物;我们将开发工具和算法来机械地模拟时空蛋白质
细胞器中的网络和。预测更高的生理表型;我们将把个体
表型、健康史和多尺度分子谱来检查心血管疾病
机制等这些工具将在云基础架构上实施、交付和执行,
最小化用户所需的计算能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MERRY L LINDSEY其他文献
MERRY L LINDSEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MERRY L LINDSEY', 18)}}的其他基金
Short Course In Transferable Skills Training (SHIFT) Program
可转移技能培训短期课程 (SHIFT) 计划
- 批准号:
10725020 - 财政年份:2023
- 资助金额:
$ 152.12万 - 项目类别:
MMP-12 as an Endogenous Post-MI Resolution Promoting Factor
MMP-12 作为内源性 MI 后消退促进因子
- 批准号:
10327670 - 财政年份:2019
- 资助金额:
$ 152.12万 - 项目类别:
Systems Biology of Fibroblast Activation Following Myocardial Infarction
心肌梗塞后成纤维细胞激活的系统生物学
- 批准号:
9463789 - 财政年份:2016
- 资助金额:
$ 152.12万 - 项目类别:
Systems Biology of Fibroblast Activation Following Myocardial Infarction
心肌梗塞后成纤维细胞激活的系统生物学
- 批准号:
9119340 - 财政年份:2016
- 资助金额:
$ 152.12万 - 项目类别:
Systems Biology of Fibroblast Activation Following Myocardial Infarction
心肌梗塞后成纤维细胞激活的系统生物学
- 批准号:
9264010 - 财政年份:2016
- 资助金额:
$ 152.12万 - 项目类别:
A Community Effort to Translate Protein Data to Knowledge: An Integrated Platform
将蛋白质数据转化为知识的社区努力:一个集成平台
- 批准号:
9087292 - 财政年份:2014
- 资助金额:
$ 152.12万 - 项目类别:
A Community Effort to Translate Protein Data to Knowledge: An Integrated Platform
将蛋白质数据转化为知识的社区努力:一个集成平台
- 批准号:
8935858 - 财政年份:2014
- 资助金额:
$ 152.12万 - 项目类别:
A Community Effort to Translate Protein Data to Knowledge: An Integrated Platform
将蛋白质数据转化为知识的社区努力:一个集成平台
- 批准号:
8774362 - 财政年份:2014
- 资助金额:
$ 152.12万 - 项目类别:
A Community Effort to Translate Protein Data to Knowledge: An Integrated Platform
将蛋白质数据转化为知识的社区努力:一个集成平台
- 批准号:
9298691 - 财政年份:2014
- 资助金额:
$ 152.12万 - 项目类别:
MMP-9 Roles in the Aging Myocardial Response to Ischemia
MMP-9 在衰老心肌缺血反应中的作用
- 批准号:
8397507 - 财政年份:2009
- 资助金额:
$ 152.12万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 152.12万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 152.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 152.12万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 152.12万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 152.12万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 152.12万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 152.12万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 152.12万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 152.12万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 152.12万 - 项目类别:
Standard Grant














{{item.name}}会员




