How eukaryotic pathogens explore the fitness landscape by mitotic recombination
真核病原体如何通过有丝分裂重组探索适应性景观
基本信息
- 批准号:8604684
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-15 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAnimal ModelAntifungal TherapyBiocompatible MaterialsCell SeparationChromosomesDataDevelopmentDiploidyEnvironmentEukaryotaEventEvolutionGene MutationGenesGeneticGenetic DriftGenetic LoadGenetic RecombinationGenetic VariationGenomeGenomicsGenotypeGoalsGreen Fluorescent ProteinsGrowthHabitatsHaploidyHealthHumanInfectionLarvaLifeLife Cycle StagesLoss of HeterozygosityMalignant NeoplasmsMapsMeiosisMethodsMicrobeMitosisMitotic RecombinationModelingMolecular EpidemiologyMothsMutationNatural SelectionsNucleotidesOrganismPathogenesisPathogenicity IslandPhenotypePlayPopulationPopulation GeneticsPopulation SizesProcessReactive Oxygen SpeciesRelative (related person)ResearchRoleSaccharomyces cerevisiaeSpeedStagingSystemTemperatureTestingVariantVirulenceVirulence FactorsWaxesWorkYeast Model SystemYeastsasexualbaseempoweredepidemiology studyfitnessin vivointerestnext generation sequencingnovelpandemic diseasepathogenpositional cloningpublic health relevanceresearch studysample fixationsexstressortheoriestumorigenesis
项目摘要
DESCRIPTION (provided by applicant):
Mitotic recombination occurs in all diploid organisms, but its evolutionary significance has largely been ignored. Mitotic recombination causes loss of heterozygosity (LOH), making it counterintuitive that it could be adaptive. In large multicellular organisms, LOH is considered primarily maladaptive and is frequently associated with tumorigenesis. Yet in organisms with a free-living haploid stage that lack a high genetic load, such as many unicellular fungal and protozoan pathogens, LOH it is likely to be an important mechanism speeding the fixation of beneficial recessive alleles. This assumption is reinforced by studies of natural populations of diploid pathogens that consistently show evidence for polymorphic LOH genomic regions. These observations indicate that LOH is pervasive, however there is a critical need to address whether, under what conditions, and by what mechanisms LOH is an essential component of how diploid pathogens explore their fitness landscapes. Our central hypothesis is that LOH is an important component of evolution by positive selection, but the relative importance of LOH as an adaptive force will be positively correlated with the heterozygosity of the initial genotype or population. We are particularly interested in applying this to the fitness landscape of pathogens because they are notoriously clonal, at least 1,500 described pathogenic protozoon species are diploid, and pathogens appear to have increased rates of LOH in vivo. Here we propose a novel method to test whether heterozygosity speeds the rate of adaptation by mitotic recombination using a yeast-wax worm (Saccharomyces cerevisiae-Galleria mellonella) pathogenesis model. Aim 1 will clonally evolve replicate populations growing inside waxworm larvae initiated from single parental genotypes differing over a 32-fold range of heterozygosity. Using fluorescent cell sorting based on a green fluorescent protein tagged yeast, we will be able to extract pure yeast populations from the infected larvae after 48 hrs of in vivo growth, and this process will be repeated for 100 serial transfers. Cell sorting also allows pathogen fitness to be estimated at each transfer, allowing us to test whether the rate of adaptation is correlated with initial heterozygosity. Aim 2 will use next generation sequencing to genotype the evolved lines to identify parallel LOH events among replicate populations that indicate the action of positive selection and identify virulence genes. Using this experimental evolution approach will allow us to avoid the problems associated genetic drift and mutation accumulation due to small population sizes. Development of the yeast-Galleria infection model into an experimental evolution system will provide a means to map the relationship between pathogen genotype, virulence, and fitness in more powerful way than standard reverse genetic approaches.
描述(由申请人提供):
有丝分裂重组存在于所有二倍体生物中,但其进化意义在很大程度上被忽视了。有丝分裂重组会导致杂合性丢失(LOH),这使得它可能是适应性的这一点与直觉相反。在大型多细胞生物体中,杂合性缺失主要被认为是不适应的,并且经常与肿瘤的发生有关。然而,在缺乏高遗传负荷的自由生活单倍体阶段的生物体中,如许多单细胞真菌和原生动物病原体,LOH可能是加速有益隐性等位基因固定的重要机制。对二倍体病原体自然种群的研究证实了这一假设,这些研究一直表明存在多态的LOH基因组区域。这些观察表明杂合性缺失是普遍存在的,然而,迫切需要解决的问题是,杂合性缺失是否是二倍体病原体探索其适应环境的重要组成部分,在什么条件下,以及通过什么机制。我们的中心假设是LOH是正向选择进化的重要组成部分,但LOH作为一种适应力量的相对重要性将与初始基因或群体的杂合性正相关。我们对将这一理论应用于病原体的适应状况特别感兴趣,因为它们是众所周知的克隆,至少1,500种所描述的致病原虫是二倍体,而且病原体在体内的LOH率似乎有所增加。在这里,我们提出了一种新的方法来测试杂合性是否加快了有丝分裂重组的适应速度,使用酵母-蜡虫(Saccharmyces cerevisiae-Galleria mellonella)致病模型。目的1将克隆进化生长在蜡虫幼虫体内的复制群体,这些群体起源于不同杂合度32倍的单亲基因。使用基于绿色荧光蛋白标记的酵母的荧光细胞分选,我们将能够在体内生长48小时后从感染的幼虫中提取纯酵母菌群,并且这个过程将重复100次连续转移。细胞分类还可以在每次转移时估计病原体的适合度,使我们能够测试适应速度是否与初始杂合性相关。目标2将使用下一代测序来对进化的品系进行基因分型,以在复制群体中识别平行的LOH事件,表明正选择的作用,并识别毒力基因。使用这种实验性的进化方法将使我们能够避免由于种群规模较小而导致的遗传漂移和突变积累的问题。酵母-盖氏杆菌感染模型的发展成为一个实验性的进化系统,将提供一种比标准反向遗传方法更强大的方法来绘制病原体基因、毒力和适合度之间的关系图。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim James其他文献
Tim James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim James', 18)}}的其他基金
Isolating the phenotypic effects of individual loss of heterozygosity events in a pathogenic yeast model system
分离致病酵母模型系统中个体杂合性丢失事件的表型效应
- 批准号:
10621822 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Isolating the phenotypic effects of individual loss of heterozygosity events in a pathogenic yeast model system
分离致病酵母模型系统中个体杂合性丢失事件的表型效应
- 批准号:
10429513 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
How eukaryotic pathogens explore the fitness landscape by mitotic recombination
真核病原体如何通过有丝分裂重组探索适应性景观
- 批准号:
8489735 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:














{{item.name}}会员




