A New Generation Clinical Decision Support System

新一代临床决策支持系统

基本信息

  • 批准号:
    8695607
  • 负责人:
  • 金额:
    $ 58.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

Critical clinical activities involve decision making. For both individual patients and for society at large, making good healthcare decisions is a paramount task. The objective of this research is to develop a novel decision support system that utilizes both the clinical features and the genomic profile of a breast cancer patient to assist the physician in integrating information about a specific patient (diagnostic subtype, tumor stage and grade, age, comorbidities) to make therapeutic plans for the patient. Traditional clinical data are becoming increasingly available in electronic form. Unprecedentedly abundant genomic data are available to researchers as the results of advanced sequencing technologies such as next generation sequencing. Patient-specific genomic data are likely to become available for most patients in the foreseeable future. These sources of data provide significant opportunities for developing new generation clinical decision support systems that can achieve substantial progress over what is currently possible. However, the sheer magnitude of the number of variables in these data (often in the millions) presents formidable computational and modeling challenges. Also, integrating the heterogeneous information in multiple clinical datasets and genomic datasets presents an arduous challenge. Breast cancer is the commonest cancer among women. Various breast cancer subtypes have been defined which, along with tumor stage, predict response to therapy and survival, albeit imperfectly. For example, HER2-amplified breast cancer is a subtype with poor prognosis, and therapy with an antibody to HER2 (Herceptin) has vastly improved the survival of such patients. Although Herceptin is used in the therapy of all patients with HER2-amplified tumors, only some respond. Also, it is expensive and can cause cardiac toxicity. So, it is important to give it only to patients benefiting from it. Studies show thousands of genes are associated with subtype and prognosis of breast cancer, and particular allele combinations may usefully guide the selection of effective treatment. The proposed system will amass all this genomic information and combine it with clinical information and therefore holds promise to provide accurate classification and treatment choices. We will build the knowledge base of the proposed system using the following sources: 1) The Medical Archival Systems at the University of Pittsburgh Medical Center; 2) The Lynn Sage Database used by the Lynn Sage Comprehensive Breast Center at Northwestern Memorial Hospital; 3) The breast cancer data sets from The Cancer Genome Atlas project; and 4) Dream 7 Breast Cancer Challenge Data. The proposed system will build on previous results of the investigators in using Bayesian Network to learn from high-dimensional data sets. Our multidisciplinary team has a track record, including NIH funding, publications in biomedical informatics and artificial intelligence, and experience developing cutting-edge decision support systems.
关键临床活动涉及决策。对于患者个人和整个社会来说, 良好的医疗保健决策是一项至关重要的任务。这项研究的目的是开发一种新的决策 支持系统,其利用乳腺癌患者的临床特征和基因组谱, 帮助医生整合关于特定患者的信息(诊断亚型、肿瘤分期和 等级、年龄、合并症)来为患者制定治疗计划。 传统的临床数据越来越多地以电子形式提供。空前 丰富的基因组数据可供研究人员作为先进的测序技术的结果, 作为下一代测序。大多数患者可能会获得特定于患者的基因组数据 在可预见的将来。这些数据来源为开发新的 第二代临床决策支持系统,可以实现实质性的进展, 可能然而,这些数据中变量的数量(通常以百万计) 提出了巨大的计算和建模挑战。此外,集成异构信息 在多个临床数据集和基因组数据集中呈现出艰巨的挑战。 乳腺癌是女性中最常见的癌症。各种乳腺癌亚型已经被 定义,其沿着肿瘤分期,预测对治疗的反应和存活,尽管不完全。为 例如,HER 2扩增的乳腺癌是一种预后不良的亚型, HER 2(赫赛汀)极大地改善了这些患者的生存率。虽然赫赛汀用于治疗 在所有HER 2扩增肿瘤患者中,只有部分患者有反应。此外,它价格昂贵,并可能导致心脏病 毒性因此,重要的是只给从中受益的患者。研究表明, 与乳腺癌的亚型和预后相关,特定的等位基因组合可以有效地指导 选择有效的治疗方法。拟议中的系统将收集所有这些基因组信息,并将联合收割机 它具有临床信息,因此有望提供准确的分类和治疗选择。 我们将使用以下来源构建所提出的系统的知识库:1)医疗 匹兹堡大学医学中心的档案系统; 2)林恩使用的林恩塞奇数据库 西北纪念医院的Sage综合乳腺中心; 3)来自 癌症基因组图谱项目;和4)梦想7乳腺癌挑战数据。拟设系统可 建立在研究人员使用贝叶斯网络从高维数据中学习的先前结果的基础上 集.我们的多学科团队有着良好的记录,包括NIH的资助,生物医学领域的出版物, 信息学和人工智能,以及开发尖端决策支持系统的经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xia Jiang其他文献

Xia Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xia Jiang', 18)}}的其他基金

A New Generation Clinical Decision Support System
新一代临床决策支持系统
  • 批准号:
    9067517
  • 财政年份:
    2014
  • 资助金额:
    $ 58.28万
  • 项目类别:
A New Generation Clinical Decision Support System
新一代临床决策支持系统
  • 批准号:
    8856659
  • 财政年份:
    2014
  • 资助金额:
    $ 58.28万
  • 项目类别:
Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning
通过高效贝叶斯网络学习检测全基因组上位性
  • 批准号:
    7958949
  • 财政年份:
    2010
  • 资助金额:
    $ 58.28万
  • 项目类别:
Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning
通过高效贝叶斯网络学习检测全基因组上位性
  • 批准号:
    8628875
  • 财政年份:
    2010
  • 资助金额:
    $ 58.28万
  • 项目类别:
Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning
通过高效贝叶斯网络学习检测全基因组上位性
  • 批准号:
    8372706
  • 财政年份:
    2010
  • 资助金额:
    $ 58.28万
  • 项目类别:
Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning
通过高效贝叶斯网络学习检测全基因组上位性
  • 批准号:
    8145599
  • 财政年份:
    2010
  • 资助金额:
    $ 58.28万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 58.28万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 58.28万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 58.28万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 58.28万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 58.28万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了