Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning

通过高效贝叶斯网络学习检测全基因组上位性

基本信息

  • 批准号:
    8628875
  • 负责人:
  • 金额:
    $ 20.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-30 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

Detecting Genome-Wide Epistasis with Efficient Bayesian Network Learning Epistasis is the interaction between two or more genes to affect phenotype. It is now widely accepted that epistasis plays an important role in susceptibility to many common diseases. The advent of high-throughput technologies has enabled genome-wide association studies (GWAS or GWA studies). It is compelling that we be able to detect epistasis using GWAS data. However, so far GWA studies have mainly focused on the association of a single gene or loci with a disease. The crucial challenge to analyzing epistasis using GWAS data is finding a way to efficiently handle high-dimensional data sets. The only possible solution is to design efficient algorithms that allow us to find the most relevant epistasic relationships without doing an exhaustive investigation. To the Principal Investigator's knowledge, no current method can do this. This career award will investigate this problem. The specific aims are as follows: (Aim 1) develop and evaluate efficient Bayesian network-based methods for learning candidate genes associated with diseases from GWAS sets. Such genes would provide candidates for follow-up biological studies, (Aim 2) implement the methods in a pilot GWAS system for use by researchers when conducting a GWAS, (Aim 3) develop simulated genome-wide data sets and evaluate the pilot system using these data sets, and (Aim 4) conduct GWA studies concerning breast cancer and lung cancer. Aim 1 will be addressed by developing a succinct Bayesian network model representing epistasis, efficient algorithms which are tailored to investigating such models, integration of the algorithms into methods for learning epistasis, and using simulated datasets to test the effectiveness of the methods and compare their performance to other methods. Aim 2 will be met by implementing the methods in a pilot GWAS system. Aim 3 will be satisfied by developing synthetic data sets similar to those found in GWA studies, and using them to evaluate the system. Aim 4 will be achieved by conducting GWA studies concerning breast and lung cancer. By conducting these studies, we can (1) substantiate previous results concerning the genetic basis of these diseases; (2) possibly obtain interesting new findings pertaining to these diseases. The main hypothesis is that the proposed method will be an advance over existing methods in that it will make it computationally feasible to learn epistatic relationships from genome-wide data and it will therefore yield better discovery performance than existing methods.
利用高效贝叶斯网络学习检测全基因组上位性

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Primer on Bayesian Decision Analysis With an Application to a Kidney Transplant Decision.
  • DOI:
    10.1097/tp.0000000000001145
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Neapolitan R;Jiang X;Ladner DP;Kaplan B
  • 通讯作者:
    Kaplan B
LEAP: biomarker inference through learning and evaluating association patterns.
  • DOI:
    10.1002/gepi.21889
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jiang, Xia;Neapolitan, Richard E.
  • 通讯作者:
    Neapolitan, Richard E.
Study of integrated heterogeneous data reveals prognostic power of gene expression for breast cancer survival.
  • DOI:
    10.1371/journal.pone.0117658
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Neapolitan RE;Jiang X
  • 通讯作者:
    Jiang X
Discovering causal interactions using Bayesian network scoring and information gain.
  • DOI:
    10.1186/s12859-016-1084-8
  • 发表时间:
    2016-05-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Zeng Z;Jiang X;Neapolitan R
  • 通讯作者:
    Neapolitan R
Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring.
  • DOI:
    10.1371/journal.pone.0143247
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jiang X;Jao J;Neapolitan R
  • 通讯作者:
    Neapolitan R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xia Jiang其他文献

Xia Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xia Jiang', 18)}}的其他基金

A New Generation Clinical Decision Support System
新一代临床决策支持系统
  • 批准号:
    9067517
  • 财政年份:
    2014
  • 资助金额:
    $ 20.48万
  • 项目类别:
A New Generation Clinical Decision Support System
新一代临床决策支持系统
  • 批准号:
    8695607
  • 财政年份:
    2014
  • 资助金额:
    $ 20.48万
  • 项目类别:
A New Generation Clinical Decision Support System
新一代临床决策支持系统
  • 批准号:
    8856659
  • 财政年份:
    2014
  • 资助金额:
    $ 20.48万
  • 项目类别:
Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning
通过高效贝叶斯网络学习检测全基因组上位性
  • 批准号:
    7958949
  • 财政年份:
    2010
  • 资助金额:
    $ 20.48万
  • 项目类别:
Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning
通过高效贝叶斯网络学习检测全基因组上位性
  • 批准号:
    8372706
  • 财政年份:
    2010
  • 资助金额:
    $ 20.48万
  • 项目类别:
Detecting Genome Wide Epistasis with Efficient Bayesian Network Learning
通过高效贝叶斯网络学习检测全基因组上位性
  • 批准号:
    8145599
  • 财政年份:
    2010
  • 资助金额:
    $ 20.48万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了