Tetrahydrobiopterin & eNOS uncoupling regulation of EPC function and wound healin

四氢生物蝶呤

基本信息

  • 批准号:
    8838109
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Refractory wounds in diabetes are a particularly challenging clinical problem that often leads to amputations. It is a major health problem in diabetic population including many veterans. Angiogenesis is a rate-limiting step in normal wound repair but is severely impaired as a diabetic microvascular complication, resulting in diminished blood flow in the non-healing wounds. The circulating endothelial progenitor cells (EPCs), derived from the bone marrow, home to the wounding site to form new vessels, are dysfunctional in diabetes. The cellular mechanisms underlying diabetic EPC dysfunction, however, are poorly understood. Recent studies show that EPCs from endothelial nitric oxide synthase (eNOS) knockout mice displays markedly impaired angiogenic function, suggesting that one mechanism of EPC dysfunction is decreased nitric oxide (NO). In contrast, a cardinal feature - in diabetes is hyperglycemia-mediated superoxide anion (O2 ) overproduction, which has been reported to impair EPC function. Accumulating evidence indicates that eNOS is a bi-functional enzyme that - becomes "uncoupled" and will produce O2 instead of NO when its essential cofactor tetrahydrobiopterin (BH4) is oxidized by reactive oxygen species (ROS). Recent studies indicate that eNOS is uncoupled in streptozotocin (STZ)-induced type 1 diabetes. In this setting, uncoupled eNOS exaggerates oxidative stress. Therefore, it is extremely important to understand the dynamic regulation of BH4 synthesis on EPC function in vivo. BH4 synthesis is controlled by its rate-limiting enzyme GTP cyclohydrolase I (GTPCH I). Recent studies demonstrate that circulating EPCs in diabetic patients have reduced BH4 level, resulting in excessive ROS and decreased NO. Yet remarkably little is known about how GTPCH/BH4 pathway regulates EPC function in diabetes. Lack of such knowledge is a significant problem, because without it, acquiring the ability to rescue EPC dysfunction to augment therapeutic angiogenesis is highly unlikely. Our long-term goal is to understand how impaired wound healing in diabetes can be therapeutically ameliorated. The objective of this proposal, which is a step toward attaining that goal, is to determine how GTPCH/BH4 pathway regulates EPC angiogenesis in diabetic wound healing. Our central hypothesis is that eNOS uncoupling contributes to EPC dysfunction in STZ-induced diabetic mice via inducing anti-angiogenic protein thrombospodin-1 (TSP-1), which may be retarded by GTPCH overexpression in vivo, resulting in eNOS recoupling and improved efficacy of EPC cell therapy on refractory diabetic wounds. Thus, the rationale for the proposed research is that discovery of the defects in diabetic EPCs and the means to correct them could lead to autologous cell therapies for diabetic wounds. Our hypothesis was formulated after a careful analysis of published work in the field and the generation of some key preliminary data in our own laboratory. We plan to test our central hypothesis and accomplish our objective by pursuing two Specific Aims, using some novel planned approaches including the endothelial-specific GTPCH I transgenic mice (Tg-GCH) and GTPCH/BH4 deficient hph-1 mice. In Aim 1, we will elucidate how eNOS uncoupling impairs EPC angiogenesis. In Aim 2, we will determine if preventing eNOS uncoupling by increasing BH4 in EPCs improves the efficacy of EPC cell therapy on diabetic wounds. The major significance of the proposed research is that it will, for the first time, determine how eNOS uncoupling and GTPCH/BH4 pathway regulate EPC function and wound repair in an integrated fashion, which may provide a mechanistic basis for the restoration of EPC function and therapeutic angiogenesis to combat refractory diabetic wounds, a devastating complication that affects thousands of aging veterans as well as the general population.
描述(由申请人提供): 糖尿病难治性伤口是一个特别具有挑战性的临床问题,常常导致截肢。这是糖尿病人群(包括许多退伍军人)的一个主要健康问题。血管生成是正常伤口修复的限速步骤,但作为糖尿病微血管并发症,血管生成受到严重损害,导致不愈合伤口中的血流减少。循环内皮祖细胞(EPC)源自骨髓,在受伤部位形成新血管,在糖尿病中功能失调。然而,糖尿病 EPC 功能障碍的细胞机制尚不清楚。最近的研究表明,内皮一氧化氮合酶 (eNOS) 敲除小鼠的 EPC 表现出明显受损的血管生成功能,这表明 EPC 功能障碍的机制之一是一氧化氮 (NO) 减少。相比之下,糖尿病的一个主要特征是高血糖介导的超氧阴离子 (O2) 过量产生,据报道这会损害 EPC 功能。越来越多的证据表明,eNOS 是一种双功能酶,当其必需的辅助因子四氢生物蝶呤 (BH4) 被活性氧 (ROS) 氧化时,它会“解偶联”并产生 O2 而不是 NO。最近的研究表明,eNOS 在链脲佐菌素 (STZ) 诱导的 1 型糖尿病中呈解偶联状态。在这种情况下,未偶联的 eNOS 会加剧氧化应激。因此,了解BH4合成对体内EPC功能的动态调节极为重要。 BH4 的合成由其限速酶 GTP 环水解酶 I (GTPCH I) 控制。最近的研究表明,糖尿病患者的循环 EPC 降低了 BH4 水平,导致 ROS 过多和 NO 减少。然而,人们对 GTPCH/BH4 通路如何调节糖尿病中 EPC 功能知之甚少。缺乏此类知识是一个重大问题,因为如果没有这些知识,就不太可能获得挽救 EPC 功能障碍以增强治疗性血管生成的能力。 我们的长期目标是了解如何通过治疗方法改善糖尿病患者的伤口愈合受损。该提案的目的是确定 GTPCH/BH4 通路如何调节糖尿病伤口愈合中的 EPC 血管生成,这是实现该目标的一步。我们的中心假设是,eNOS 解偶联通过诱导抗血管生成蛋白血小板球蛋白-1 (TSP-1) 导致 STZ 诱导的糖尿病小鼠的 EPC 功能障碍,TSP-1 可能会因体内 GTPCH 过度表达而延迟,从而导致 eNOS 重新偶联并提高 EPC 细胞治疗难治性糖尿病伤口的疗效。因此,这项研究的基本原理是,发现糖尿病 EPC 的缺陷以及纠正这些缺陷的方法可能会导致糖尿病伤口的自体细胞疗法。我们的假设是在仔细分析该领域已发表的工作并在我们自己的实验室生成一些关键的初步数据后制定的。我们计划通过追求两个特定目标来测试我们的中心假设并实现我们的目标,使用一些新的计划方法,包括内皮特异性 GTPCH I 转基因小鼠 (Tg-GCH) 和 GTPCH/BH4 缺陷 hph-1 小鼠。在目标 1 中,我们将阐明 eNOS 解偶联如何损害 EPC 血管生成。在目标 2 中,我们将确定通过增加 EPC 中的 BH4 来预防 eNOS 解偶联是否可以提高 EPC 细胞疗法对糖尿病伤口的疗效。该研究的主要意义在于,它将首次确定eNOS解偶联和GTPCH/BH4通路如何以整合的方式调节EPC功能和伤口修复,这可能为恢复EPC功能和治疗性血管生成以对抗难治性糖尿病伤口提供机制基础,难治性糖尿病伤口是一种影响数千名老年退伍军人和普通大众的毁灭性并发症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex F Chen其他文献

R-spondin 3 Inhibits High Glucose-Induced Endothelial Activation Through Leucine-Rich G Protein-Coupled Receptor 4/Wnt/β-catenin Pathway.
R-spondin 3 通过富含亮氨酸的 G 蛋白偶联受体 4/Wnt/β-连环蛋白途径抑制高葡萄糖诱导的内皮激活。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong Chen;Hang Qu;Fang Liu;Yu Yu;Kun Sun;Alex F Chen
  • 通讯作者:
    Alex F Chen
PhospholipaseCγ1/calcium-dependent membranous localization of Gsdmd-N drives endothelial pyroptosis, contributing to lipopolysaccharide-induced fatal outcome
Gsdmd-N 的磷脂酶Cγ1/钙依赖性膜定位驱动内皮细胞焦亡,导致脂多糖诱导的致命结果
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong Liu;Da Tang;Xiaoyu Zhou;Xiaoping Yang;Alex F Chen
  • 通讯作者:
    Alex F Chen
Nitric oxide: a newly discovered function on wound healing
一氧化氮:伤口愈合的一个新发现功能
  • DOI:
    10.1111/j.1745-7254.2005.00058.x
  • 发表时间:
    2005-03-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Jian-dong Luo;Alex F Chen
  • 通讯作者:
    Alex F Chen

Alex F Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex F Chen', 18)}}的其他基金

MicroRNA Regulation of Endothelial Progenitor Cell Function and Wound Healing
MicroRNA 对内皮祖细胞功能和伤口愈合的调节
  • 批准号:
    8974189
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
MicroRNA Regulation of Endothelial Progenitor Cell Function and Wound Healing
MicroRNA 对内皮祖细胞功能和伤口愈合的调节
  • 批准号:
    8976093
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Tetrahydrobiopterin & eNOS uncoupling regulation of EPC function and wound healin
四氢生物蝶呤
  • 批准号:
    8466772
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Tetrahydrobiopterin & eNOS uncoupling regulation of EPC function and wound healin
四氢生物蝶呤
  • 批准号:
    7870828
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Tetrahydrobiopterin & eNOS uncoupling regulation of EPC function and wound healin
四氢生物蝶呤
  • 批准号:
    8840049
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
CORE D-- CELL CULTURE AND VIRAL RESOURCES
核心 D——细胞培养和病毒资源
  • 批准号:
    7452273
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
Redox regulation of endothelial function and wound healing
内皮功能和伤口愈合的氧化还原调节
  • 批准号:
    7839648
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
Redox regulation of endothelial function and wound healing
内皮功能和伤口愈合的氧化还原调节
  • 批准号:
    7922495
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
Redox regulation of endothelial function and wound healing
内皮功能和伤口愈合的氧化还原调节
  • 批准号:
    7234132
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
Redox regulation of endothelial function and wound healing
内皮功能和伤口愈合的氧化还原调节
  • 批准号:
    7082357
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了