Elucidating Vertebral Microstructure with Diffraction Enhanced Imaging
利用衍射增强成像阐明椎骨微观结构
基本信息
- 批准号:8825075
- 负责人:
- 金额:$ 7.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-17 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAnisotropyBiomechanicsBone DensityBone TissueClinicClinicalClinical assessmentsDataDeteriorationDoseEffectivenessFemaleFirst lumbar vertebraFractureFrequenciesFutureGoalsGoldImageImaging TechniquesIndividualLightLinear RegressionsLocationMapsMeasurementMeasuresMetricMorphologyOsteoporosisPeripheralPhasePositioning AttributePredispositionPropertyRegression AnalysisRiskRisk AssessmentSamplingSeriesStructureSurveysSystemSystemic diseaseTechnologyTestingTimeTranslatingVariantX-Ray Computed Tomographybasebonebone massbone strengthin vivomalemortalitynovelpublic health relevancespine bone structurestandard measuretool
项目摘要
DESCRIPTION (provided by applicant): Osteoporosis is "a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue." The current clinical assessment metric, bone mineral density (BMD), sheds little light on microarchitectural deterioration. BMD used in combination with the degree of anisotropy (DA) in the bone microarchitecture is strongly predictive of vertebral strength and stiffness, but critical barriers
preclude the clinical assessment of the degree of anisotropy in bone, especially within vertebrae where fractures have a high mortality and are highly predictive of future fractures. A low dose, non-invasive tool capable of measuring DA in vertebrae would overcome these barriers and provide clinicians with a more specific and individualized metric for bone strength and fracture risk. In this application, we propose to develop such a tool based on diffraction enhanced imaging (DEI), a phase contrast x-ray imaging technique. DEI can detect extremely small angular spreading that occurs when an x-ray beam is refracted by microstructures in bone. DEI has directional sensitivity that enables it to measure the angular orientation and the degree of anisotropy in the refracting microarchitecture. In this proof-of-principle study, our goal is to elucidate the relationship between the DEI- measured degree of anisotropy and the strength and stiffness of the vertebrae. In Specific Aim 1, we will establish DEI's ability to measure the degree of anisotropy in vertebrae through comparing the DEI-measured degree of anisotropy to the gold standard measure from micro-CT. Cadaveric vertebrae (age 60-64 male n=3, female n=3; age 70-74 male n=3, female n=3; and ages 80-84 male n=4, female n=4) will be obtained and the BMD will be assessed with a clinical dual-energy x-ray absorptiometry system. Micro-CT images will be used to measure bone morphology parameters of each vertebra. A series of DEI reflectivity profile images will be obtained and these images will be combined into 2D images mapping the preferred orientation direction and DA at each position in the vertebra. Linear regression analysis will be used to elucidate the mathematical relationship between gold standard bone measurements and the DEI-based measures. In Specific Aim 2, we will elucidate the relationship between vertebral strength and stiffness and the DEI-measured degree of anisotropy. Biomechanical testing will be performed to assess the strength and stiffness of the vertebrae. The correlation coefficient between the stiffness and strength of each vertebra and the DEI-measured DA will be calculated. Multiple regression analysis will determine the effectiveness of the DEI-measures in combination with BMD for assessing bone strength. In this study, we will establish DEI's sensitivity to DA in vertebral microarchitecture and validate a nove microarchitectural assessment tool for predicting fracture strength and stiffness in intact vertebrae. DEI's unique capability for assessing microarchitectural deterioration at otherwise non-resolvable size-scales will give clinicians a powerful new tool for assessing fracture risk. These findings will drive multiple future studies where we will translate this technology into the clinic.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dean M. Connor其他文献
A Humanized Monoclonal Antibody to Secreted Frizzled Related Protein-2 as a Targeted Therapy for Triple Negative Breast Cancer
- DOI:
10.1016/j.jamcollsurg.2021.07.039 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Julie B. Siegel;Dean M. Connor;Patrick Nasarre;Rupak Mukherjee;Eleanor Hilliard;Ann-Marie Broome;Nancy DeMore - 通讯作者:
Nancy DeMore
Dean M. Connor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
- 批准号:
2330254 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
- 批准号:
23K05776 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
- 批准号:
2240506 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
- 批准号:
2322719 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
- 批准号:
EP/X025454/1 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Research Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant