Using Integrative Genomics To Identify and Characterize Emphysema-Associated eQTL
使用综合基因组学来识别和表征肺气肿相关的 eQTL
基本信息
- 批准号:8762578
- 负责人:
- 金额:$ 87.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesArchitectureAreaBindingBioinformaticsBiological AssayBiological ProcessBiologyBlood specimenCause of DeathCell LineCellsCharacteristicsChromosomesChronic Obstructive Airway DiseaseClinicalCollaborationsComplexComputer SimulationDataDevelopmentDiseaseDisease susceptibilityEpithelial CellsGene ExpressionGene Expression ProfileGenesGeneticGenetic DeterminismGenetic Predisposition to DiseaseGenetic VariationGenomicsGoalsHealthImageIndividualInterdisciplinary StudyInvestigationLeadLinkLungMeasuresMeta-AnalysisMolecular BiologyMutationNucleic Acid Regulatory SequencesPatternPhenotypePredispositionProtein IsoformsPublic HealthPulmonary EmphysemaQuantitative Trait LociRNA SequencesRecording of previous eventsReporterResearchRiskSamplingScanningSignal TransductionSmokerSpecificitySyndromeTissuesUpdateVariantWhole BloodWorkX-Ray Computed Tomographybasedensityepigenomicsgenetic associationgenetic risk factorgenetic variantgenome wide association studygenome-wideimprovedinnovationlung acinus structurelymphoblastoid cell linenovelnovel strategiespublic health relevanceresearch studysmall airways diseasestandard measuretranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Chronic obstructive pulmonary disease (COPD) is a major public health burden, and it is the third leading cause of death in the US. Genome-wide association studies (GWAS) in COPD have successfully identified disease-associated genetic loci, but most of the genetic susceptibility to this disease has yet to be explained. The translatin of GWAS discoveries into new disease-modifying treatments requires the continued discovery and functional characterization of GWAS-identified loci. It is clear that many GWAS loci are gene expression quantitative trait loci (i.e. eQTLs) and that fine modulation of gene expression patterns is a key component of the genetic architecture of complex diseases, including COPD. COPD is a complex clinical syndrome that may consist of distinct biological processes. One fruitful approach to this complexity is to identify COPD-associated phenotypes, such as emphysema, that have their own strong GWAS signals and distinct biology. Emphysema is a heritable phenotype. However, few studies have been able to generate emphysema phenotypes in samples large enough for adequately-powered GWAS, and existing quantitative emphysema measures have known limitations. Using a novel, approach for emphysema quantification from lung computed tomography scans based on local histograms, we have generated detailed quantitative emphysema measures on over 9,000 subjects in the COPDGene Study that are more informative than traditional emphysema measures. This proposal is based on two hypotheses - 1) GWAS of local histogram emphysema patterns will identify novel emphysema-associated genetic variants and 2) genetic control of gene expression is an important mechanism by which genetic variation impacts the emphysema phenotype. To investigate these hypotheses, we propose the following specific aims. In Aim 1, updated LHE phenotypes will be generated in the COPDGene and ECLIPSE studies, and GWAS will be performed to identify emphysema-associated genetic variants. In Aim 2, eQTL analysis using RNA-Seq data will be performed in bronchial epithelial cells (BECs) and whole blood samples from COPDGene subjects with a range of emphysema. These eQTL and GWAS results will be integrated to identify novel emphysema-associated loci and link these loci to the genes through which they exert their phenotypic effects. In Aim 3a, we will identify genomic regions that are likely to be causally-linked to emphysema susceptibility through an innovative approach integrating GWAS, eQTL, and functional regulatory data from the ENCODE and Roadmap Epigenomics projects. In Aim 3b, the functional relevance of these genomic regions will be examined in cell-based functional assays in BEC cell lines. This work builds on strong preliminary data, and the research team has a history of close collaboration and multidisciplinary expertise in areas critical for this project.
描述(由申请人提供):慢性阻塞性肺疾病(COPD)是一个主要的公共卫生负担,是美国第三大死因。慢性阻塞性肺病的全基因组关联研究(GWAS)已成功识别出与疾病相关的基因位点,但对该疾病的大部分遗传易感性仍有待解释。将 GWAS 发现转化为新的疾病缓解疗法需要持续发现 GWAS 识别的位点并对其进行功能表征。很明显,许多 GWAS 基因座是基因表达数量性状基因座(即 eQTL),基因表达模式的精细调节是包括 COPD 在内的复杂疾病遗传结构的关键组成部分。慢性阻塞性肺病是一种复杂的临床综合征,可能由不同的生物过程组成。解决这种复杂性的一种有效方法是识别与 COPD 相关的表型,例如肺气肿,它们有自己强大的 GWAS 信号和独特的生物学特性。肺气肿是一种可遗传的表型。然而,很少有研究能够在足够大的样本中生成肺气肿表型,以进行充分动力的 GWAS,并且现有的定量肺气肿测量方法具有已知的局限性。使用基于局部直方图的肺部计算机断层扫描进行肺气肿量化的新颖方法,我们在 COPDGene 研究中对 9,000 多名受试者生成了详细的定量肺气肿测量值,这些测量值比传统的肺气肿测量值更丰富。该提议基于两个假设 - 1)局部直方图肺气肿模式的 GWAS 将识别新的肺气肿相关遗传变异,2)基因表达的遗传控制是遗传变异影响肺气肿表型的重要机制。为了研究这些假设,我们提出以下具体目标。在目标 1 中,将在 COPDGene 和 ECLIPSE 研究中生成更新的 LHE 表型,并将进行 GWAS 来识别与肺气肿相关的遗传变异。在目标 2 中,将使用 RNA-Seq 数据对患有一系列肺气肿的 COPDGene 受试者的支气管上皮细胞 (BEC) 和全血样本进行 eQTL 分析。这些 eQTL 和 GWAS 结果将被整合,以识别新的肺气肿相关基因座,并将这些基因座与它们发挥表型效应的基因联系起来。在目标 3a 中,我们将通过整合 GWAS、eQTL 以及来自 ENCODE 和 Roadmap Epigenomics 项目的功能调控数据的创新方法,识别可能与肺气肿易感性存在因果关系的基因组区域。在目标 3b 中,将在 BEC 细胞系中通过基于细胞的功能测定来检查这些基因组区域的功能相关性。这项工作建立在强有力的初步数据的基础上,研究团队在该项目的关键领域有着密切合作的历史和多学科的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Castaldi其他文献
Peter Castaldi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Castaldi', 18)}}的其他基金
Prospective Health Outcomes and Inflammatory Biomarkers Associated with e-Cigarette Use
与电子烟使用相关的预期健康结果和炎症生物标志物
- 批准号:
10018099 - 财政年份:2019
- 资助金额:
$ 87.32万 - 项目类别:
Prospective Health Outcomes and Inflammatory Biomarkers Associated with e-Cigarette Use
与电子烟使用相关的预期健康结果和炎症生物标志物
- 批准号:
10226191 - 财政年份:2019
- 资助金额:
$ 87.32万 - 项目类别:
Using Integrative Genomics To Identify and Characterize Emphysema-Associated eQTL
使用综合基因组学来识别和表征肺气肿相关的 eQTL
- 批准号:
10471299 - 财政年份:2014
- 资助金额:
$ 87.32万 - 项目类别:
Using Integrative Genomics To Identify and Characterize Emphysema-Associated eQTL
使用综合基因组学来识别和表征肺气肿相关的 eQTL
- 批准号:
10653966 - 财政年份:2014
- 资助金额:
$ 87.32万 - 项目类别:
Using Integrative Genomics To Identify and Characterize Emphysema-Associated eQTL
使用综合基因组学来识别和表征肺气肿相关的 eQTL
- 批准号:
8913766 - 财政年份:2014
- 资助金额:
$ 87.32万 - 项目类别:
Using Integrative Genomics To Identify and Characterize Emphysema-Associated eQTL
使用综合基因组学来识别和表征肺气肿相关的 eQTL
- 批准号:
10298583 - 财政年份:2014
- 资助金额:
$ 87.32万 - 项目类别:
Predictive Modeling with Clinical and Genomic Data in COPD
利用 COPD 的临床和基因组数据进行预测建模
- 批准号:
8063638 - 财政年份:2010
- 资助金额:
$ 87.32万 - 项目类别:
Predictive Modeling with Clinical and Genomic Data in COPD
利用 COPD 的临床和基因组数据进行预测建模
- 批准号:
8500430 - 财政年份:2010
- 资助金额:
$ 87.32万 - 项目类别:
Predictive Modeling with Clinical and Genomic Data in COPD
利用 COPD 的临床和基因组数据进行预测建模
- 批准号:
8668035 - 财政年份:2010
- 资助金额:
$ 87.32万 - 项目类别:
Predictive Modeling with Clinical and Genomic Data in COPD
利用 COPD 的临床和基因组数据进行预测建模
- 批准号:
7875053 - 财政年份:2010
- 资助金额:
$ 87.32万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 87.32万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 87.32万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 87.32万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 87.32万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 87.32万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 87.32万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 87.32万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 87.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 87.32万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 87.32万 - 项目类别: