Overcoming barriers in the study of in vivo spinal cord function

克服体内脊髓功能研究的障碍

基本信息

  • 批准号:
    8739332
  • 负责人:
  • 金额:
    $ 33.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-25 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Deciphering the relationship between animal behavior and cellular activity in the central nervous system (CNS) is perhaps one of the greatest challenges in neuroscience research today. Traditionally, electrophysiological approaches have been used to sparsely sample from electrically excitable cells of freely moving animals. This has led to the discovery of important behaviorally related phenomena such as place, grid, and head-direction cells in the brain and central pattern generator (CPG) neurons in the spinal cord. Optical imaging in combination with new labeling approaches now allows minimally invasive and comprehensive sampling from dense networks of electrically and chemically excitable cells, such as neurons and glial cells. Imaging in head- restrained mobile mice and with miniaturized head-borne microscopes, for example, has led to the discovery of unanticipated forms of behaviorally related neuronal and glial cell excitation in cortical and hippocampal microcircuits. Long wavelength two- and three-photon excitation now enables imaging in brain regions previously accessible only by invasive endoscopic methods. In contrast, imaging in the spinal cord, the primary neurological link between the brain and other parts of the body, is limited to superficial dorsal regions in anesthetized animals. Because anesthesia precludes animal behavior and alters cellular activity, and because essential central pattern generator components are located in deep tissue regions key aspects of spinal cord physiology have remained elusive. Additionally, because current imaging approaches are limited to either the spinal cord or brain, little is known about how the communication between these CNS regions contributes to behavior. Overcoming such critical barriers in the study of CNS function and dysfunction requires development and application of new tools and approaches. As part of this application new tools and approaches for minimally invasive optical recordings from spinal cord microcircuits during animal behavior, from presently inaccessible deep spinal cord regions, and from anatomically connected brain-spinal cord networks will be developed. The rationale for the proposed research is that once these barriers have been overcome new and unanticipated insight into spinal cord physiology and pathology will be gained. Three specific aims will be pursued: 1) Enable study of spinal cord microcircuits in behaving mice through development of restraint and freely moving imaging approaches; 2) Enable minimally invasive study of deep spinal cord regions in live mice through development of adaptive infrared imaging approaches; and 3) Enable minimally invasive study of spinal cord-brain communication in live mice through development of parallel imaging approaches. Together, the proposed research contribution is significant because it will provide new and unanticipated insight into how defined cell types and their activity patterns relate to spinal cord physiology, brain-spinal cord communication, and animal behavior. It is innovative because it will provide a unique set of tools and approaches with groundbreaking possibilities in multiple areas of science.
描述(由申请人提供):破译动物行为和中枢神经系统(CNS)细胞活性之间的关系可能是当今神经科学研究中最大的挑战之一。传统上,电生理学方法已经被用于从自由移动的动物的电可兴奋细胞中稀疏地采样。这导致了重要的行为相关现象的发现,例如大脑中的位置,网格和头部方向细胞以及脊髓中的中央模式发生器(CPG)神经元。光学成像与新的标记方法相结合,现在允许从电和化学可兴奋细胞(如神经元和神经胶质细胞)的密集网络中进行微创和全面的采样。例如,在头部受限的移动的小鼠中以及使用小型化头载显微镜进行成像,已经导致在皮层和海马微电路中发现了与行为相关的神经元和神经胶质细胞兴奋的意外形式。长波长的两光子和三光子激发现在可以在以前只能通过侵入性内窥镜方法才能到达的大脑区域进行成像。相比之下,脊髓成像,大脑和身体其他部位之间的主要神经联系,仅限于麻醉动物的浅表背侧区域。由于麻醉排除了动物的行为并改变了细胞活动,并且由于重要的中枢模式发生器组件位于深部组织区域,因此脊髓生理学的关键方面仍然难以捉摸。此外,由于目前的成像方法仅限于脊髓或大脑,因此对这些CNS区域之间的通信如何影响行为知之甚少。克服CNS功能和功能障碍研究中的这些关键障碍需要开发和应用新的工具和方法。作为该应用的一部分,将开发新的工具和方法,用于在动物行为期间从脊髓微电路、从目前无法到达的脊髓深部区域以及从解剖学上连接的脑脊髓网络进行微创光学记录。提出这项研究的理由是,一旦这些障碍被克服,将获得对脊髓生理学和病理学的新的和意想不到的见解。将追求三个具体目标:1)通过开发约束和自由移动成像方法,实现对行为小鼠脊髓微电路的研究; 2)通过开发自适应红外成像方法,实现对活体小鼠脊髓深部区域的微创研究; 3)通过开发并行成像方法,实现对活体小鼠脊髓-脑通讯的微创研究。总之,拟议的研究贡献是重要的,因为它将提供新的和意想不到的见解,如何定义细胞类型及其活动模式与脊髓生理学,脑脊髓通信和动物行为。它是创新的,因为它将提供一套独特的工具和方法,在多个科学领域具有开创性的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Axel Nimmerjahn其他文献

Axel Nimmerjahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Axel Nimmerjahn', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10294801
  • 财政年份:
    2021
  • 资助金额:
    $ 33.76万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10461223
  • 财政年份:
    2021
  • 资助金额:
    $ 33.76万
  • 项目类别:
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
  • 批准号:
    10693171
  • 财政年份:
    2021
  • 资助金额:
    $ 33.76万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10693162
  • 财政年份:
    2021
  • 资助金额:
    $ 33.76万
  • 项目类别:
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
  • 批准号:
    10294804
  • 财政年份:
    2021
  • 资助金额:
    $ 33.76万
  • 项目类别:
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
  • 批准号:
    10461226
  • 财政年份:
    2021
  • 资助金额:
    $ 33.76万
  • 项目类别:
Elucidating cellular activity patterns underlying spinal cord function
阐明脊髓功能背后的细胞活动模式
  • 批准号:
    9912873
  • 财政年份:
    2019
  • 资助金额:
    $ 33.76万
  • 项目类别:
Elucidating cellular activity patterns underlying spinal cord function
阐明脊髓功能背后的细胞活动模式
  • 批准号:
    10381704
  • 财政年份:
    2019
  • 资助金额:
    $ 33.76万
  • 项目类别:
Genetically encoded indicators for large-scale sensing of neuromodulatory signaling in behaving animals
用于大规模感知行为动物神经调节信号的基因编码指标
  • 批准号:
    9533713
  • 财政年份:
    2017
  • 资助金额:
    $ 33.76万
  • 项目类别:
Genetically encoded indicators for large-scale sensing of neuromodulatory signaling in behaving animals
用于大规模感知行为动物神经调节信号的基因编码指标
  • 批准号:
    9767296
  • 财政年份:
    2017
  • 资助金额:
    $ 33.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了