Genetically encoded indicators for large-scale sensing of neuromodulatory signaling in behaving animals
用于大规模感知行为动物神经调节信号的基因编码指标
基本信息
- 批准号:9533713
- 负责人:
- 金额:$ 95.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAcuteAddressAffectAffinityAmino AcidsAnatomyAnimal BehaviorAnimalsArousalArrestinsAttentionBehaviorBehavioralBiological AssayBody RegionsBrainBrain regionCalciumCatecholaminesCell NucleusCell SurvivalCellsCognitionCognitiveColorCommunicationCommunitiesComputer SimulationCorpus striatum structureCyclic AMPDimensionsDirected Molecular EvolutionDiseaseDopamineDorsalElectric StimulationElectrophysiology (science)EmotionsEvolutionFlow CytometryG-Protein-Coupled ReceptorsGTP-Binding ProteinsGenerationsGlutamatesHealthHumanImageIn VitroKineticsLeadLigandsLinkMeasurementMental DepressionMental disordersMicrodialysisMicroscopyMolecularMusNervous system structureNeurodegenerative DisordersNeurogliaNeuromodulatorNeuronsNeuropeptidesNeurosciencesNoiseNorepinephrineOpioidOpticsOutputParkinson DiseasePathway interactionsPatternPeptide Signal SequencesPerceptionPeriodicityPharmaceutical PreparationsPlayPopulationProcessPropertyProteinsReportingResearch PersonnelResolutionRoleScaffolding ProteinSchizophreniaSensitivity and SpecificitySerotoninSignal TransductionSiteSite-Directed MutagenesisSliceSpecificitySpinalSpinal cord injurySubstantia nigra structureSurfaceSynapsesSynaptic TransmissionSystemTechniquesTestingTimeValidationViralWhole-Cell RecordingsWorkaddictionarrestin 2basebehavior influencebehavior testbeta-arrestincalcium indicatordorsal horndrug of abuseextracellulargamma-Aminobutyric Acidhigh throughput screeningin vivoinsightlocus ceruleus structureminimally invasivemonoaminemouse modelmultidisciplinarynanonervous system disorderneural circuitneuronal patterningneuroregulationnoveloperationrecruitsensorspatiotemporalsuccesstemporal measurementtraffickingtwo-photonvirtualvoltage
项目摘要
Brain functions are executed by intricately coordinated networks of neurons, whose modes of operation are
highly sensitive to a constellation of neuromodulators. More specifically, neuromodulators such as dopamine,
norepinephrine, serotonin, and acetylcholine exert dramatic control over global brain processes such as
arousal, attention, emotion, or cognitive perception. Altered neuromodulator signaling has been linked to
neurological and psychiatric disorders such as Parkinson's disease, schizophrenia, depression and addiction.
Similarly, opioid neuropeptides play important roles in the modulation of cognition and behavior. While the
anatomical structures that produce neuromodulatory signals are well known, little is known about the spatial
and temporal evolution of these signals in the innervated brain regions. This is because current measurement
techniques, such as microdialysis or cyclic voltammetry, lack the spatial or temporal resolution (and often the
molecular specificity) to resolve respective signals. This technical challenge has been a long-standing barrier
to our understanding of how neuromodulation alters neural circuit function in order to influence behavior. To
address this challenge, this project will develop, validate, and disseminate novel genetically encoded
fluorescent proteins for large-scale optical measurement of monoamine neuromodulator and opioid
neuropeptide signaling in behaving animals, by bringing together a multi-disciplinary team of investigators with
unique and complementary expertise. These sensor proteins have the potential to revolutionize neuroscience
in a way similar to genetically encoded indicators for calcium, glutamate, and voltage, which are now in
widespread use. Combined with calcium and voltage imaging, neuromodulator sensors will reveal how these
systems impinge on cellular and circuit function. In particular, proposed sensors will enable minimally invasive,
high-resolution, long-term, and direct measurement of neuromodulator and neuropeptide signaling at synaptic,
cellular, and system levels. Sensors for neuromodulatory signaling have remained elusive for a long time. Our
team recently developed a first generation of genetically encoded indicators for serotonin (5-HT),
norepinephrine (NE), and dopamine (DA) that can report nano- to micromolar concentration changes with high
spatial and temporal resolution. Building on this work, the following specific aims are proposed: 1) Optimize
and diversify genetically encoded sensors for the monoamines using computational modeling, directed
evolution and high-throughput screening; 2) Develop and optimize genetically encoded sensors for opiate
neuropeptides using novel protein scaffolds; and 3) Systematically validate the novel neuromodulator and
neuropeptide sensors in acute brain slices and behaving animals. Together, this work will provide the
neuroscience community with a wide range of well-characterized multi-color indicators for probing the
functional role of neuromodulators and neuropeptides in regulating neural circuit function and behavior in both
health and disease.
大脑功能是由复杂协调的神经元网络执行的,其操作模式是
对一系列神经调节剂高度敏感。更具体地说,神经调节剂,如多巴胺,
去甲肾上腺素、5-羟色胺和乙酰胆碱对全局大脑过程有戏剧性的控制,如
觉醒、注意力、情感或认知知觉。神经调节器信号的改变与
神经和精神障碍,如帕金森氏症、精神分裂症、抑郁症和成瘾。
同样,阿片神经肽在认知和行为的调节中起着重要的作用。而当
产生神经调节信号的解剖结构是众所周知的,但对空间上的
以及这些信号在被神经支配的大脑区域中的时间演变。这是因为电流测量
微透析法或循环伏安法等技术缺乏空间或时间分辨率(通常
分子特异性)来解析各自的信号。这一技术挑战一直是一个长期存在的障碍
对于神经调节如何改变神经回路功能从而影响行为的理解。至
为了应对这一挑战,该项目将开发、验证和传播新的基因编码
荧光蛋白用于单胺类神经调节剂和阿片类药物的大规模光学测量
行为动物中的神经肽信号,通过将一个多学科的研究小组与
独特和互补的专业知识。这些感受器蛋白有可能给神经科学带来革命性的变化。
以类似于钙、谷氨酸和电压的遗传编码指示器的方式,这些指示器现在在
广泛使用。结合钙离子和电压成像,神经调节剂传感器将揭示这些
系统会影响细胞和电路功能。特别是,所提出的传感器将使微创、
高分辨率,长期,直接测量神经调节剂和神经肽信号在突触,
蜂窝层和系统层。长期以来,神经调节信号的传感器一直难以捉摸。我们的
该团队最近开发了第一代5-羟色胺(5-羟色胺)的遗传编码指标,
去甲肾上腺素(NE)和多巴胺(DA)可以报告纳摩尔到微摩尔的浓度变化
空间和时间分辨率。在此基础上,提出了以下具体目标:1)优化
并使用计算模型使单胺的遗传编码传感器多样化,
进化和高通量筛选;2)开发和优化阿片类药物的遗传编码传感器
使用新型蛋白质支架的神经肽;3)系统地验证新型神经调节剂和
急性脑片和行为动物的神经肽感受器。总而言之,这项工作将提供
神经科学社区,具有广泛的特性良好的多颜色指示器,用于探测
神经调节剂和神经肽在调节神经回路功能和行为中的作用
健康和疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Axel Nimmerjahn其他文献
Axel Nimmerjahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Axel Nimmerjahn', 18)}}的其他基金
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
- 批准号:
10693171 - 财政年份:2021
- 资助金额:
$ 95.31万 - 项目类别:
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
- 批准号:
10294804 - 财政年份:2021
- 资助金额:
$ 95.31万 - 项目类别:
Linking Fast Timescale Neuron-Astrocyte Communication to Neural Circuit Function and Behavior
将快速时间尺度神经元-星形胶质细胞通信与神经回路功能和行为联系起来
- 批准号:
10461226 - 财政年份:2021
- 资助金额:
$ 95.31万 - 项目类别:
Elucidating cellular activity patterns underlying spinal cord function
阐明脊髓功能背后的细胞活动模式
- 批准号:
9912873 - 财政年份:2019
- 资助金额:
$ 95.31万 - 项目类别:
Elucidating cellular activity patterns underlying spinal cord function
阐明脊髓功能背后的细胞活动模式
- 批准号:
10381704 - 财政年份:2019
- 资助金额:
$ 95.31万 - 项目类别:
Genetically encoded indicators for large-scale sensing of neuromodulatory signaling in behaving animals
用于大规模感知行为动物神经调节信号的基因编码指标
- 批准号:
9767296 - 财政年份:2017
- 资助金额:
$ 95.31万 - 项目类别:
Overcoming barriers in the study of in vivo spinal cord function
克服体内脊髓功能研究的障碍
- 批准号:
8739332 - 财政年份:2013
- 资助金额:
$ 95.31万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 95.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 95.31万 - 项目类别:
Operating Grants