Drug Combination Signatures for Prediction and Mitigation of Toxicity

用于预测和减轻毒性的药物组合特征

基本信息

项目摘要

DESCRIPTION (provided by applicant): The overall goal of the DTSGC is to use genomic and proteomic high-throughput measurements coupled with mid-throughput experimental measurement of protein states as the basis for computational analysis that integrates network analyses with structural constraints and dynamical models in multiple cell types to identify signatures that predict toxicity induced by individual drugs and mitigation of this toxicity by dru combinations. To anchor the signatures in observable human disease and therapeutics, we will leverage the strategy employed in our recent study, in which we searched the FDA-Adverse Event Reporting System Database (FAERS) and found nearly thousands of drug combinations used in humans where a second drug mitigates serious toxicity associated with first drug. We hypothesize that we can use these observations to improve our capability to predict toxicity of drugs and mitigation by drug pairs. The Center has three major goals: 1) experimentally obtain expression patterns of mRNA, proteins and protein states (e.g. phosphorylation) for around 250 perturbagens: 120 two-drug combinations identified in the FAERS whereby the second drug mitigates serious toxicities induced by the first drug and 130 individual drugs that have been shown in FAERS to cause one of three serious toxicities-cardiotoxicity; hepatic toxicity or peripheral neuropathy. We will use primary or established human cell lines and cell types directly differentiated from human induced pluripotent cells (hIPSC). For each drug combination and the two constituent drugs we will obtain mRNA, proteomic data, and dynamic protein state from least 18 cell lines. 2) We will utilize the experimental data for multi-tier analyses that combines statistical and network models using the human interactome and Gene Ontology with structural model based filtering and dynamical multi-compartment ODE models to obtain sets of relational signatures for each drug combination. For this we will combine the perturbagen induced changes in mRNA levels and protein levels to develop networks that will be constrained by structural modeling to identify new off-targets and dynamical models using the protein state data. The network models provide toxicity mitigation mechanism hypotheses in the form of a directed sign-specified graph which will be quantitatively weighted by global sensitivity analysis of the dynamical models. We propose to obtain non-weighted and weighted signatures for both drug combinations and individual drugs at the rate of around 4000 signatures per year. 3) We will develop computational and visualization tools for sharing the raw and processed data with the LINCS Data Coordinating Center and the larger community. We will i) develop web-based tools for data visualization and de novo analysis for all types of researchers ii) run web-based courses using Coursera for data utilization and development of signature-based research projects iii) conduct 4-6 personalized workshops to enable academic researchers to utilize our signatures to develop research projects that can compete for individual research grant funding.
描述(由申请人提供):DTSGC的总体目标是使用基因组和蛋白质组学高通量测量以及蛋白质状态的中通量实验测量作为计算分析的基础,该计算分析将网络分析与多种细胞类型中的结构约束和动力学模型相结合,以识别预测单个药物诱导的毒性和药物组合缓解该毒性的特征。为了将这些特征锚定在可观察到的人类疾病和治疗方法中,我们将利用我们最近研究中采用的策略,在该研究中,我们搜索了FDA不良事件报告系统数据库(FAERS),发现了近数千种用于人类的药物组合,其中第二种药物减轻了与第一种药物相关的严重毒性。我们假设,我们可以使用这些观察,以提高我们的能力,预测药物的毒性和缓解药物对。该中心有三个主要目标:1)实验获得mRNA、蛋白质和蛋白质状态的表达模式(例如磷酸化)的影响:在FAERS中鉴定的120种两药组合,其中第二种药物减轻了由第一种药物诱导的严重毒性,以及在FAERS中显示的130种单独药物引起三种严重毒性之一-心脏毒性;肝毒性或周围神经病变。我们将使用原代或已建立的人细胞系和直接从人诱导多能细胞(hIPSC)分化的细胞类型。对于每种药物组合和两种组分药物,我们将从至少18种细胞系中获得mRNA、蛋白质组学数据和动态蛋白质状态。2)我们将利用实验数据进行多层分析,该分析将使用人类相互作用组和基因本体的统计和网络模型与基于结构模型的过滤和动态多隔室ODE模型相结合,以获得每种药物组合的关系签名集。为此,我们将结合联合收割机的干扰素诱导的mRNA水平和蛋白质水平的变化,开发网络,将通过结构建模的约束,以确定新的脱靶和动态模型,使用蛋白质状态数据。网络模型提供毒性缓解机制的假设,在一个有向符号指定的图形,将定量加权的动态模型的全局灵敏度分析的形式。我们建议以每年约4000个签名的速度获得药物组合和单个药物的非加权和加权签名。3)我们将开发计算和可视化工具,用于与LINCS数据协调中心和更大的社区共享原始和处理后的数据。我们将i)为所有类型的研究人员开发基于网络的数据可视化和从头分析工具ii)使用Coursera运行基于网络的课程,用于数据利用和基于签名的研究项目的开发iii)举办4-6个个性化研讨会,使学术研究人员能够利用我们的签名来开发可以竞争个人研究资助的研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc R. Birtwistle其他文献

Purifying circular RNA by ultrafiltration
通过超滤纯化环状RNA
  • DOI:
    10.1016/j.seppur.2025.132809
  • 发表时间:
    2025-08-27
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Karen Guillen-Cuevas;Xiaoming Lu;Marc R. Birtwistle;Scott M. Husson
  • 通讯作者:
    Scott M. Husson
Theory for High-Throughput Genetic Interaction Screening
高通量遗传相互作用筛选理论
  • DOI:
    10.1021/acssynbio.2c00627
  • 发表时间:
    2023-08-18
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Madeline E. McCarthy;William B. Dodd;Xiaoming Lu;Daniel J. Pritko;Nishi D. Patel;Charlotte V. Haskell;Hugo Sanabria;Mark A. Blenner;Marc R. Birtwistle
  • 通讯作者:
    Marc R. Birtwistle
Network analyses of brain tumor multiomic data reveal pharmacological opportunities to alter cell state transitions
对脑瘤多组学数据的网络分析揭示了改变细胞状态转变的药理学机会
  • DOI:
    10.1038/s41540-025-00493-2
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Brandon Bumbaca;Jonah R. Huggins;Marc R. Birtwistle;James M. Gallo
  • 通讯作者:
    James M. Gallo

Marc R. Birtwistle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc R. Birtwistle', 18)}}的其他基金

Gelbrane: Combined Gel and Membrane for Robust Western Blotting
Gelbrane:结合凝胶和膜实现稳健的蛋白质印迹
  • 批准号:
    10759072
  • 财政年份:
    2023
  • 资助金额:
    $ 209.97万
  • 项目类别:
Accessible and Robust High-Throughput Western Blotting for Small Sample Sizes
适用于小样本量的易于使用且稳定的高通量蛋白质印迹法
  • 批准号:
    10545990
  • 财政年份:
    2022
  • 资助金额:
    $ 209.97万
  • 项目类别:
Mechanistic Pharmacodynamic Modeling for Drug Combination Responses
药物组合反应的机制药效学建模
  • 批准号:
    10398952
  • 财政年份:
    2021
  • 资助金额:
    $ 209.97万
  • 项目类别:
Mechanistic Pharmacodynamic Modeling for Drug Combination Responses
药物组合反应的机制药效学建模
  • 批准号:
    10580895
  • 财政年份:
    2021
  • 资助金额:
    $ 209.97万
  • 项目类别:
Mechanistic Pharmacodynamic Modeling for Drug Combination Responses
药物组合反应的机制药效学建模
  • 批准号:
    10592423
  • 财政年份:
    2021
  • 资助金额:
    $ 209.97万
  • 项目类别:
Mechanistic Pharmacodynamic Modeling for Drug Combination Responses
药物组合反应的机制药效学建模
  • 批准号:
    10206849
  • 财政年份:
    2021
  • 资助金额:
    $ 209.97万
  • 项目类别:
Administrative Supplement to Support Summer Undergraduate Research for the Parent MIRA Award R35 GM141891 “Mechanistic Pharmacodynamic Modeling for Drug Combinations"
支持家长 MIRA 奖 R35 GM141891 暑期本科生研究的行政补充 — 药物组合的机械药效学建模”
  • 批准号:
    10809119
  • 财政年份:
    2021
  • 资助金额:
    $ 209.97万
  • 项目类别:
Multiplexed, Quantitative Fluorescence Imaging in Tumor Sections
肿瘤切片的多重定量荧光成像
  • 批准号:
    9566479
  • 财政年份:
    2015
  • 资助金额:
    $ 209.97万
  • 项目类别:
Multiplexed, Quantitative Fluorescence Imaging in Tumor Sections
肿瘤切片的多重定量荧光成像
  • 批准号:
    9329290
  • 财政年份:
    2015
  • 资助金额:
    $ 209.97万
  • 项目类别:
Multiplexed, Quantitative Fluorescence Imaging in Tumor Sections
肿瘤切片的多重定量荧光成像
  • 批准号:
    8928922
  • 财政年份:
    2015
  • 资助金额:
    $ 209.97万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 209.97万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 209.97万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 209.97万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 209.97万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 209.97万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 209.97万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 209.97万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 209.97万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 209.97万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 209.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了