Mechanisms of respiratory-related rhythmic motor activity and plasticity in the avian brain stem

禽类脑干呼吸相关节律性运动活动和可塑性的机制

基本信息

  • 批准号:
    8812709
  • 负责人:
  • 金额:
    $ 36.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-30 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long term goal of our research team is to understand how brain stem motor circuits that control life sustaining autonomous breathing patterns develop, mature and maintain rhythmic neural activity. It is also relevant to determine how these circuits respond to abnormal environments and stress. This project proposes to use a new experimental model system to explore the location(s), synaptic physiology, and plasticity of breathing-related central pattern generators (CPGs) in the isolated Zebra Finch brain stem during early development. The avian embryonic model is uniquely tractable for experimental manipulation and provides unparalleled access to central neuronal networks throughout prenatal development. We will use anatomical techniques, nerve cell activities, and pharmacology to test our hypotheses in the context of understanding normal breathing behaviors and breathing-related neuropathologies in which the modification or loss of brain stem structures that control normal rhythm and motor patterns can lead to increased morbidity and mortality in neonates and adults. Importantly, funds from this proposal will introduce students to Biomedically-based research at Idaho State University (ISU) using hands-on lab experiences and focused individual training in a variety of professional and scientific practices. We seek to address three key aspects associated with the field of developmental neurobiology and the control of breathing: 1. Identification of spatially separate respiratory-related brain stem CPGs. Aim 1 will test the role of the avian nucleus paraambiguus (PAm) and the retroambiguus (RAm) in the neurogenesis of automatic breathing rhythms. Historically, in vitro studies have focused on the inspiratory phase. Yet, the breathing cycle involves both inspiration and expiration. Since birds employ active inspiration and active expiration, even at rest, we hypothesize that avian embryos at the internal hatching stage (i.e., when continuous air-breathing begins) generate breathing rhythms with two independent yet coupled CPGs, similar to the situation in exercising humans when high levels of ventilatory drive is necessary. 2. Mechanisms of burst generation and pattern formation in the avian brain stem. Aim 2 will test the hypothesis that respiratory-related CPG behavior in birds is critically dependent on inhibitory synaptic input, similar to many network-based locomotor CPG circuits. Specifically, we hypothesize spontaneous rhythms will be critically dependent on chloride-mediated neurotransmission as a mechanism to control duty cycles for breathing pattern. As an alternate hypothesis, we will test the role of endogenous pacemaker mechanisms in the maintenance and shape of respiratory-related CPG output.3. Mechanisms of homeostatic/developmental plasticity in the breathing-related brain stem. Aim 3 will test how persistent embryonic manipulations of rhythmic electrical activity with and without manipulations of specific neurotransmitters may alter the developmental expression of CPG behavior as well as the phenotype of neurotransmitter systems that support breathing.
描述(由申请人提供):我们研究团队的长期目标是了解控制生命维持自主呼吸模式的脑干运动回路如何发育、成熟和维持节律性神经活动。确定这些电路如何响应异常环境和压力也很重要。该项目拟使用一种新的实验模型系统来探索斑胸草雀离体脑干早期发育过程中与呼吸相关的中枢模式发生器(CPG)的位置、突触生理学和可塑性。禽类胚胎模型具有独特的易操作性,易于实验操作,并在整个产前发育过程中提供了无与伦比的中枢神经网络通道。我们将使用解剖技术、神经细胞活动和药理学来检验我们的假设,以了解正常呼吸行为和呼吸相关的神经病理学,其中控制正常节律和运动模式的脑干结构的改变或丧失可能导致新生儿和成人的发病率和死亡率增加。重要的是,该提案的资金将向学生介绍爱达荷州立大学 (ISU) 的生物医学研究,利用实验室实践经验和各种专业和科学实践的集中个人培训。我们寻求解决与发育神经生物学和呼吸控制领域相关的三个关键问题: 1. 识别空间上独立的呼吸相关脑干 CPG。目标 1 将测试鸟类副疑核 (PAm) 和后疑核 (RAm) 在自动呼吸节律的神经发生中的作用。从历史上看,体外研究主要集中在吸气相。然而,呼吸循环涉及吸气和呼气。由于鸟类即使在休息时也会采用主动吸气和主动呼气,因此我们假设鸟类胚胎在内部孵化阶段(即开始连续呼吸空气时)会产生具有两个独立但耦合的 CPG 的呼吸节律,类似于人类运动时需要高水平通气驱动的情况。 2. 鸟类脑干爆发产生和模式形成的机制。目标 2 将检验以下假设:鸟类与呼吸相关的 CPG 行为严重依赖于抑制性突触输入,这与许多鸟类类似。 基于网络的运动 CPG 电路。具体来说,我们假设自发节律将严重依赖于氯介导的神经传递作为控制呼吸模式占空比的机制。作为替代假设,我们将测试内源性起搏器机制在呼吸相关 CPG 输出的维持和形状中的作用。3。呼吸相关脑干的稳态/发育可塑性机制。目标 3 将测试在有或没有特定神经递质操作的情况下对节律性电活动的持续胚胎操作可能如何改变 CPG 行为的发育表达以及支持呼吸的神经递质系统的表型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Quinn Pilarski其他文献

Jason Quinn Pilarski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Quinn Pilarski', 18)}}的其他基金

Effects of chronic nicotinic excitation on central glutamatergic control of breat
慢性烟碱兴奋对乳房中枢谷氨酸能控制的影响
  • 批准号:
    7706447
  • 财政年份:
    2009
  • 资助金额:
    $ 36.26万
  • 项目类别:
Effects of chronic nicotinic excitation on central glutamatergic control of breat
慢性烟碱兴奋对乳房中枢谷氨酸能控制的影响
  • 批准号:
    7901363
  • 财政年份:
    2009
  • 资助金额:
    $ 36.26万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 36.26万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了