Neuroregulatory Mechanisms of PIAS1 and Implications for Huntington's Disease
PIAS1 的神经调节机制及其对亨廷顿病的影响
基本信息
- 批准号:8921782
- 负责人:
- 金额:$ 56.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:Acidic RegionAcuteAreaBehaviorBehavioralBindingBiochemicalBiological AssayCAG repeatCellsCognitiveCommunicationComplexCorpus striatum structureCultured CellsCytokine SignalingDataDegradation PathwayDevelopmentDiseaseDisease ProgressionDrosophila genusEmployee StrikesEnzymesEquilibriumFunctional disorderGenesGenetic TranscriptionHealthHumanHuntington DiseaseImmune responseInheritedLengthLifeLigaseMediatingModificationMolecular TargetMovementMusMutateNeurodegenerative DisordersNeuronsOutcomePathogenesisPathologyPathway interactionsPharmaceutical PreparationsPhenotypePost-Translational Protein ProcessingProcessProtein FamilyProteinsPublishingReportingRoleStagingSystemTestingTherapeuticTherapeutic InterventionToxic effectTranscriptional RegulationTransgenic OrganismsWorkbasecellular targetingdesigndisease phenotypedrug developmenteffective therapyhuman Huntingtin proteinin vivoinduced pluripotent stem cellinnovationknock-downmotor impairmentmouse modelmutantnervous system disorderneuroinflammationneuropathologynoveloverexpressionprotein foldingprotein inhibitors of activated STATtherapeutic targettranscriptomicsubiquitin-protein ligase
项目摘要
DESCRIPTION (provided by applicant): Huntington's disease (HD) is an inherited neurodegenerative disease that strikes in the prime of life and for which no disease-modifying treatments exist. The disease is caused by the expansion of a CAG repeat within the HD gene, leading to complex and extensive cellular dysfunction. The identification of validated cellular targets that impact the onset and progression of disease and a mechanistic understanding of these targets in HD systems are therefore critical to development of new and effective therapeutics. Mutant HTT (mHTT) and toxic fragments derived from the mutant protein are in a dynamic equilibrium poised to shift the protein homeostatic network from the appropriate balance of protein folding, misfolding, oligomerization and degradation to one in which that balance is disrupted. Upon disruption of this network, cellular proteins accumulate and degradation pathways become impaired. Our studies suggest that the E3 SUMO ligase, PIAS1, is a key modifier of this process and may act as an important regulatory switch in this dynamic equilibrium. In published findings, we identified PIAS1 as a novel modulator of both SUMO-1 and SUMO-2 modification and accumulation of mHTT protein in cultured cells. Further, reduction of the only PIAS in Drosophila delays expression of phenotypes caused by repeat expanded HTT, suggesting this enzyme may provide a selective therapeutic target. In addition to functioning as a SUMO E3 ligase, PIAS is implicated in regulating transcription of several pathways including proinflammatory cytokine signaling and the innate immune response, which is an emerging area of focus in HD. The communication and involvement between E3 SUMO ligases and protein clearance pathways are not well understood with respect to misfolded and accumulated proteins; therefore, understanding the behavior of the PIAS1 network in HD systems will contribute a crucial understanding as to its role in HD pathology. We hypothesize that PIAS1 is a key regulator of HTT SUMOylation and accumulation, that it can modulate HD pathogenesis and that it is a novel target for HD treatments. We propose to use a complementary set of cell based assays and in vivo studies to move forward our mechanistic understanding of PIAS1-mediated networks, and validate PIAS1 as a molecular target for HD drug development. Specifically, we will perform the following aims: Aim 1: Define the PIAS1 network in primary neurons and induced pluripotent stem cells. Aim 2: PIAS1 modulation in HD mouse models. Aim 3: Functional significance of PIAS1 domains in disease modifying pathways.
描述(由申请人提供):亨廷顿氏病(HD)是一种遗传性神经退行性疾病,在生命的黄金时期发作,并且不存在疾病修饰治疗。该疾病是由HD基因内CAG重复序列的扩增引起的,导致复杂和广泛的细胞功能障碍。因此,鉴定影响疾病发作和进展的经验证的细胞靶点以及对HD系统中这些靶点的机制理解对于开发新的有效治疗方法至关重要。突变体HTT(mHTT)和衍生自突变蛋白的毒性片段处于动态平衡,以将蛋白质稳态网络从蛋白质折叠、错误折叠、寡聚化和降解的适当平衡转变为平衡被破坏的平衡。一旦这个网络被破坏,细胞蛋白质就会积累,降解途径就会受损。我们的研究表明,E3 SUMO连接酶,PIAS 1,是这个过程的关键修饰剂,并可能作为一个重要的调节开关,在这个动态平衡。在已发表的研究结果中,我们确定PIAS 1是SUMO-1和SUMO-2修饰以及培养细胞中mHTT蛋白积累的新型调节剂。此外,果蝇中唯一的皮亚斯的减少延迟了由重复扩增的HTT引起的表型的表达,表明这种酶可能提供选择性的治疗靶点。除了作为SUMO E3连接酶发挥作用外,皮亚斯还参与调节几种途径的转录,包括促炎细胞因子信号传导和先天免疫应答,这是HD的一个新兴关注领域。E3 SUMO连接酶和蛋白质清除途径之间的通信和参与对于错误折叠和积累的蛋白质尚未得到很好的理解;因此,了解PIAS 1网络在HD系统中的行为将有助于对其在HD病理学中的作用的重要理解。我们假设PIAS 1是HTT SUMO化和积累的关键调节因子,它可以调节HD发病机制,并且它是HD治疗的新靶点。我们建议使用一组互补的基于细胞的测定和体内研究来推进我们对PIAS 1介导的网络的机制理解,并验证PIAS 1作为HD药物开发的分子靶点。具体来说,我们将执行以下目标:目标1:定义PIAS 1网络在原代神经元和诱导多能干细胞。目的2:HD小鼠模型中的PIAS 1调节。目的3:PIAS 1结构域在疾病修饰途径中的功能意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie Michels Thompson其他文献
Transcription meets metabolism in neurodegeneration
转录在神经退行性变中与代谢相遇
- DOI:
10.1038/nm1106-1239 - 发表时间:
2006-11-01 - 期刊:
- 影响因子:50.000
- 作者:
Christopher A Ross;Leslie Michels Thompson - 通讯作者:
Leslie Michels Thompson
Leslie Michels Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie Michels Thompson', 18)}}的其他基金
Molecular Mechanisms of Pathogenesis in Huntington’s disease
亨廷顿病发病机制的分子机制
- 批准号:
10452484 - 财政年份:2020
- 资助金额:
$ 56.49万 - 项目类别:
Molecular Mechanisms of Pathogenesis in Huntington’s disease
亨廷顿病发病机制的分子机制
- 批准号:
10619620 - 财政年份:2020
- 资助金额:
$ 56.49万 - 项目类别:
Molecular Mechanisms of Pathogenesis in Huntington’s disease
亨廷顿病发病机制的分子机制
- 批准号:
10652688 - 财政年份:2020
- 资助金额:
$ 56.49万 - 项目类别:
From Structure to Therapy: The TRiC Chaperonin Network in Huntington's Disease
从结构到治疗:亨廷顿病中的 TRiC 伴侣蛋白网络
- 批准号:
9074429 - 财政年份:2016
- 资助金额:
$ 56.49万 - 项目类别:
From Structure to Therapy: The TRiC Chaperonin Network in Huntington's Disease
从结构到治疗:亨廷顿病中的 TRiC 伴侣蛋白网络
- 批准号:
9249123 - 财政年份:2016
- 资助金额:
$ 56.49万 - 项目类别:
Genome editing in HD iPS cells to reduce mutant and total Huntington expression
HD iPS 细胞中的基因组编辑可减少突变体和总亨廷顿表达
- 批准号:
8970040 - 财政年份:2015
- 资助金额:
$ 56.49万 - 项目类别:
Genome editing in HD iPS cells to reduce mutant and total Huntington expression
HD iPS 细胞中的基因组编辑可减少突变体和总亨廷顿表达
- 批准号:
9109084 - 财政年份:2015
- 资助金额:
$ 56.49万 - 项目类别:
In vivo longitudinal assessment of methylene blue for Huntington's disease
亚甲蓝治疗亨廷顿病的体内纵向评估
- 批准号:
8583167 - 财政年份:2014
- 资助金额:
$ 56.49万 - 项目类别:
In vivo longitudinal assessment of methylene blue for Huntington's disease
亚甲蓝治疗亨廷顿病的体内纵向评估
- 批准号:
8782646 - 财政年份:2014
- 资助金额:
$ 56.49万 - 项目类别:
Training Program in Stem Cell Translational Medicine for Neurological Disorders
神经系统疾病干细胞转化医学培训项目
- 批准号:
8869057 - 财政年份:2013
- 资助金额:
$ 56.49万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 56.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 56.49万 - 项目类别:
Operating Grants