Development and afferent regulation of auditory neurons
听觉神经元的发育和传入调节
基本信息
- 批准号:8628414
- 负责人:
- 金额:$ 38.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAfferent NeuronsAnimal ModelAnimalsAuditoryAutistic DisorderBinding ProteinsBiochemistryBirdsBrainBrain StemCell NucleusCellsCharacteristicsChickensChildCochlear nucleusCollaborationsComprehensionConfocal MicroscopyDefectDendritesDendritic SpinesDevelopmentDiseaseFamilyFragile X Mental Retardation ProteinFragile X SyndromeFrequenciesFunctional disorderGenesGeneticGoalsHearingHippocampus (Brain)HumanImageIndividualInheritedIntelligenceLifeLocationMammalsMedialMessenger RNAMorphologyMusNeurodevelopmental DisorderNeuronsOlives - dietaryPathologyPatientsPhosphorylationPhysiologicalPrevalenceProcessPropertyProtein BindingProtein DynamicsProteinsQualifyingRattusRegulationResearchResolutionRoleSensorySensory ProcessSpatial DistributionStructureStudy modelsSymptomsSynapsesSystemTestingTimeTissuesVertebral columnVertebratesWestern Blottingautism spectrum disorderbinaural hearingbrain tissuedeprivationhuman tissueimmunocytochemistryin vivoinsightknockout animalmulti-photonneuron developmentprotein expressionprotein functionprotein structurepublic health relevanceresearch studyresponse
项目摘要
Project Summary
Neuronal dendritic morphology and intrinsic properties are specialized for their function. Dendritic defects are
strongly associated with numerous neurodevelopmental disorders. In this proposal, I endeavor to identify roles
of fragile X mental retardation protein (FMRP) in dendritic regulation of auditory neurons. Absence of FMRP
results in fragile X syndrome (FXS), the most frequent inherited monogenetic cause of autism, presenting with
a constellation of symptoms that include intelligence deficits and sensory dysfunction. I propose to study FMRP
regulation during development of very well characterized binaural circuitry in the brainstem and its role in
regulation of dendritic morphology and biochemistry following changes in afferent activity and integrity.
I will conduct detailed analyses in the chicken nucleus magnocellularis (NM) and nucleus laminaris (NL), a
well-characterized animal model for studying auditory temporal processing and a tractable system for gene
manipulation, and will extend some analyses to human brains.
¿ I will characterize the developmental profile of FMRP in chicken NM and NL using Western blot and
immunocytochemistry, and identify the temporal correlations of FMRP with well-documented
characteristics of dendritic development and specialized physiological properties.
¿ I will determine how knockdown of FMRP expression affects the development of dendritic morphology
and expression of key proteins of chicken NM and NL neurons. Gene manipulations with temporal and
spatial control, individual cell filling, immunocytochemistry, and high-resolution confocal microscopy will
be used.
¿ I will determine how FMRP regulates afferent-dependent dendritic reorganization in chicken NL. I will
first examine how afferent regulates FMRP and then assess the effects of FMRP knockdown on
afferent influence of dendritic structure and biochemistry. Combined genetic and afferent manipulations,
as well as confocal and multi-photon imaging of fixed and live tissues, will be used.
¿ In collaboration with Dr. Kulesza, we will start to explore potential function of FMRP in human auditory
brainstem neurons by examining the temporal and spatial distribution of FMRP and FMRP-binding
proteins in fixed human brainstem sections using immunocytochemistry.
Overall, these studies will provide insight into FMRP regulation of dendritic arborization and specialized
properties for auditory processing neurons, and insight into mechanisms of vertebrate neuronal development
and disease pathology.
项目摘要
神经元树突的形态和内在属性是专门为他们的功能。树枝状缺陷是
与许多神经发育障碍密切相关。在本提案中,我奋进确定角色
脆性X智力低下蛋白(FMRP)在听觉神经元树突调控中的作用。无FMRP
导致脆性X综合征(FXS),自闭症最常见的遗传性单基因原因,表现为
包括智力缺陷和感觉功能障碍的一系列症状。我建议学习FMRP
脑干中特征非常明显的双耳回路发育过程中的调节及其在
在传入活动和完整性发生变化后对树突形态和生物化学的调节。
我将在鸡的大细胞核(NM)和板状核(NL)中进行详细的分析,
一种研究听觉时间加工的动物模型和一个易于处理的基因检测系统
操纵,并将一些分析扩展到人类大脑。
我将使用蛋白质印迹法表征FMRP在鸡NM和NL中的发育概况,
免疫细胞化学,并确定FMRP的时间相关性,
树突发育的特点和专门的生理特性。
我将确定FMRP表达的敲低如何影响树突状形态的发育
鸡NM和NL神经元关键蛋白的表达。基因操作与时间和
空间控制、单个细胞填充、免疫细胞化学和高分辨率共聚焦显微镜将
被利用
我将确定FMRP如何调节鸡NL中的传入依赖性树突重组。我会
首先检查传入如何调节FMRP,然后评估FMRP敲低对FMRP的影响。
树突结构和生物化学的传入影响。结合遗传和传入操作,
以及固定和活组织的共焦和多光子成像。
通过与Kulesza博士的合作,我们将开始探索FMRP在人类听觉中的潜在功能。
通过检测FMRP和FMRP结合的时间和空间分布,
蛋白质在固定的人脑干切片使用免疫细胞化学。
总的来说,这些研究将为FMRP调控树突状分支和特化提供深入了解。
听觉处理神经元的特性,以及对脊椎动物神经元发育机制的深入了解
和疾病病理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Wang其他文献
Yuan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Wang', 18)}}的其他基金
Mitochondrial dynamics in spermatogonial differentiation
精原细胞分化中的线粒体动力学
- 批准号:
10685938 - 财政年份:2022
- 资助金额:
$ 38.63万 - 项目类别:
Equipment purchase request for parent R01 - Mitochondrial dynamics in spermatogonial differentiation
母体 R01 的设备购买请求 - 精原细胞分化中的线粒体动力学
- 批准号:
10795361 - 财政年份:2022
- 资助金额:
$ 38.63万 - 项目类别:
Development and afferent regulation of auditory neurons
听觉神经元的发育和传入调节
- 批准号:
9198439 - 财政年份:2014
- 资助金额:
$ 38.63万 - 项目类别:
Development and afferent regulation of auditory neurons
听觉神经元的发育和传入调节
- 批准号:
8788398 - 财政年份:2014
- 资助金额:
$ 38.63万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists