Improved MRI temperature imaging using a subject-specific biophysical model

使用特定于受试者的生物物理模型改进 MRI 温度成像

基本信息

  • 批准号:
    8677890
  • 负责人:
  • 金额:
    $ 48.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this project is to improve magnetic resonance temperature imaging (MRTI) techniques to be used in high intensity focused ultrasound (HIFU) thermal treatments by significantly expanding their current spatial and temporal resolution and field of view (FOV) capabilities. These improvements will overcome the speed, resolution, and FOV roadblocks in transcranial MRI guided focused ultrasound therapy and thereby accelerate the acceptance of this technique into clinical practice. To realize this goal we propose to develop a completely new MRTI approach that increases speed by subsampling the measurement space (k-space) in each time frame and that uses a subject-specific biophysical model incorporating inhomogeneous tissue biothermal and acoustic properties to dynamically (in real-time) predict the missing measurements. The uniqueness of this approach is that it supplements 3D MRTI with additional subject-specific biophysical information. We refer to this method as model predictive filtering (MPF) because it is similar to other linear predictive filters, such as the Kalman filter. This new MPF technique will achieve the required accurate, precise, and rapid high-resolution measurements of temperature distributions over regions sufficiently large to effectively monitor and control treatments in real-time. The work will develop methods to improve temperature measurements in three stages: 1) First a temporally-constrained reconstruction (TCR) technique will be developed to obtain retrospective MRTI measurements with high spatial and temporal resolution over the volume of interest. 2) The TCR temperatures combined with tissue segmentation and beam modeling will be used to determine 3D subject- specific tissue acoustic and thermal properties. 3) The tissue acoustic and thermal properties will be incorporated into the MPF technique to obtain the desired temperature images over the full insonified volume in real-time. These methods will then be tested in vivo in animal models and in vitro and ex vivo in a transcranial MRgHIFU system. Transcranial brain MRgHIFU is an important application that requires the development of innovative treatment strategies and will definitely require rapid, accurate, high spatial resolution temperature measurements over the entire insonified volume. These techniques are highly novel, and upon success will facilitate experiments to accelerate the acceptance of transcranial brain MRgHIFU as well as potentially other new MRgHIFU applications.
描述(由申请人提供):该项目的目标是通过显着扩展其当前的空间和时间分辨率以及视场(FOV)能力来改进用于高强度聚焦超声(HIFU)热处理的磁共振温度成像(MRTI)技术。这些改进将克服经颅 MRI 引导聚焦超声治疗的速度、分辨率和视场障碍,从而加速该技术进入临床实践。为了实现这一目标,我们建议开发一种全新的 MRTI 方法,通过在每个时间范围内对测量空间(k 空间)进行二次采样来提高速度,并使用结合了不均匀组织生物热和声学特性的特定于受试者的生物物理模型来动态(实时)预测丢失的测量结果。这种方法的独特之处在于它用额外的特定于受试者的生物物理信息补充了 3D MRTI。我们将此方法称为模型预测滤波 (MPF),因为它与其他线性预测滤波器(例如卡尔曼滤波器)类似。这种新的 MPF 技术将实现对足够大的区域的温度分布所需的准确、精确和快速的高分辨率测量,从而有效地实时监测和控制治疗。这项工作将分三个阶段开发改进温度测量的方法:1)首先将开发时间约束重建(TCR)技术,以获得对感兴趣体积具有高空间和时间分辨率的回顾性 MRTI 测量。 2) TCR 温度与组织分割和光束建模相结合,将用于确定 3D 受试者特定组织的声学和热学特性。 3) 组织的声学和热学特性将被纳入 MPF 技术中,以实时获得整个声穿透体积内所需的温度图像。然后,这些方法将在动物模型中进行体内测试,并在经颅 MRgHIFU 系统中进行体外和离体测试。经颅脑 MRgHIFU 是一项重要的应用,需要开发创新的治疗策略,并且肯定需要在整个声穿透体积内进行快速、准确、高空间分辨率的温度测量。这些技术非常新颖,一旦成功将促进实验加速经颅脑 MRgHIFU 以及其他潜在的新 MRgHIFU 应用的接受。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of k-space-weighted image contrast and ultrasound focus size on the accuracy of proton resonance frequency thermometry.
  • DOI:
    10.1002/mrm.27383
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Svedin BT;Dillon CR;Parker DL
  • 通讯作者:
    Parker DL
Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS.
  • DOI:
    10.1186/s40349-015-0030-y
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farrer AI;Odéen H;de Bever J;Coats B;Parker DL;Payne A;Christensen DA
  • 通讯作者:
    Christensen DA
Respiration artifact correction in three-dimensional proton resonance frequency MR thermometry using phase navigators.
  • DOI:
    10.1002/mrm.25860
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Svedin BT;Payne A;Parker DL
  • 通讯作者:
    Parker DL
Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data.
  • DOI:
    10.1088/0031-9155/61/2/923
  • 发表时间:
    2016-01-21
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Dillon CR;Borasi G;Payne A
  • 通讯作者:
    Payne A
3D-specific absorption rate estimation from high-intensity focused ultrasound sonications using the Green's function heat kernel.
使用格林函数热核从高强度聚焦超声处理中估计 3D 特定吸收率。
  • DOI:
    10.1002/mp.12978
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Freeman,NicholasJ;Odéen,Henrik;Parker,DennisL
  • 通讯作者:
    Parker,DennisL
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DENNIS L PARKER其他文献

DENNIS L PARKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DENNIS L PARKER', 18)}}的其他基金

Toward the next generation in transcranial MR-guided focused ultrasound: Innovations in thermal and acoustic model-based planning and monitoring for improved safety, efficacy and efficiency
迈向下一代经颅 MR 引导聚焦超声:基于热和声学模型的规划和监测创新,以提高安全性、有效性和效率
  • 批准号:
    9803678
  • 财政年份:
    2019
  • 资助金额:
    $ 48.11万
  • 项目类别:
Toward the next generation in transcranial MR-guided focused ultrasound: Innovations in thermal and acoustic model-based planning and monitoring for improved safety, efficacy and efficiency
迈向下一代经颅 MR 引导聚焦超声:基于热和声学模型的规划和监测创新,以提高安全性、有效性和效率
  • 批准号:
    10159735
  • 财政年份:
    2019
  • 资助金额:
    $ 48.11万
  • 项目类别:
Toward the next generation in transcranial MR-guided focused ultrasound: Innovations in thermal and acoustic model-based planning and monitoring for improved safety, efficacy and efficiency
迈向下一代经颅 MR 引导聚焦超声:基于热和声学模型的规划和监测创新,以提高安全性、有效性和效率
  • 批准号:
    10401242
  • 财政年份:
    2019
  • 资助金额:
    $ 48.11万
  • 项目类别:
Multi-point MR-ARFI for time-efficient volumetric tissue stiffness imaging
多点 MR-ARFI 用于高效的体积组织硬度成像
  • 批准号:
    9251569
  • 财政年份:
    2017
  • 资助金额:
    $ 48.11万
  • 项目类别:
Improved imaging of carotid plaque using high-resolution, motion-corrected 3D MRI
使用高分辨率运动校正 3D MRI 改进颈动脉斑块成像
  • 批准号:
    9334297
  • 财政年份:
    2016
  • 资助金额:
    $ 48.11万
  • 项目类别:
Non-Invasive MRI-Guided HIFU for Breast Cancer Therapy
非侵入性 MRI 引导 HIFU 用于乳腺癌治疗
  • 批准号:
    8724454
  • 财政年份:
    2013
  • 资助金额:
    $ 48.11万
  • 项目类别:
Non-Invasive MRI-Guided HIFU for Breast Cancer Therapy
非侵入性 MRI 引导 HIFU 用于乳腺癌治疗
  • 批准号:
    9270510
  • 财政年份:
    2013
  • 资助金额:
    $ 48.11万
  • 项目类别:
Non-Invasive MRI-Guided HIFU for Breast Cancer Therapy
非侵入性 MRI 引导 HIFU 用于乳腺癌治疗
  • 批准号:
    8579530
  • 财政年份:
    2013
  • 资助金额:
    $ 48.11万
  • 项目类别:
Improved MRI temperature imaging using a subject-specific biophysical model
使用特定于受试者的生物物理模型改进 MRI 温度成像
  • 批准号:
    8305993
  • 财政年份:
    2011
  • 资助金额:
    $ 48.11万
  • 项目类别:
Improved MRI temperature imaging using a subject-specific biophysical model
使用特定于受试者的生物物理模型改进 MRI 温度成像
  • 批准号:
    8508939
  • 财政年份:
    2011
  • 资助金额:
    $ 48.11万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了