Computational Metabolomics of Gut Microbiota Metabolites
肠道微生物代谢物的计算代谢组学
基本信息
- 批准号:8638680
- 负责人:
- 金额:$ 19.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAnabolismAnimalsAnti-Inflammatory AgentsAnti-inflammatoryAromatic Amino AcidsBacteriaBiochemical PathwayCatalogingCatalogsCellsChemicalsColitisCommunitiesComplexCytochrome P450DataDevelopmentDietDiseaseEndocrine DisruptorsEnzymesEpithelial CellsExhibitsFamilyFoundationsGastrointestinal tract structureGene DosageGenesGenomeGoalsHealthHepatocyteHumanIn VitroIndividualIndolesInflammationInflammatoryInflammatory Bowel DiseasesIntestinesKnowledgeLaboratoriesLearningLipidsLiverMalignant NeoplasmsMammalsMass Spectrum AnalysisMeasurementMediatingMetabolicMetabolic BiotransformationMetabolic PathwayMetabolismMethodologyMethodsModalityModelingModificationMolecularMusNatureOrganismPathway AnalysisPathway interactionsPatternPattern RecognitionPharmaceutical PreparationsPhasePolychlorinated BiphenylsPropertyReactionRouteSamplingSignal TransductionSiteSourceSpecific qualifier valueSystemTestingTryptophanTryptophanaseUncertaintyValidationWorkXenobioticsbasebisphenol Adesigndiphenylenvironmental chemicalflexibilitygut microbiotaimmunoregulationinterestmetabolic engineeringmetabolomicsmicrobialmicrobial genomemicrobiomenetwork modelsnoveloperationpublic health relevancescreeningsuccess
项目摘要
The goal of this proposal is to build a novel, computational metabolomics platform enabling efficient exploration
of bacterial metabolites in the gastrointestinal (GI) tract. It is becoming increasingly evident that microbiota-
derived metabolites mediate important signals in the context of inflammation and immunomodulation in the
human GI tract. Despite intense interest, only a handful of bioactive microbiota metabolites in the GI tract have
been identified. One major challenge is that the spectrum of metabolites present in the GI tract is extremely
complex, as the microbiota can carry out a diverse range of biotransformation reactions, including those that
are not present in the mammalian host. Classical approaches such as isolating and culturing individual bacteria
and identifying metabolites produced in these cultures has not yielded much success, as many bacterial
species in the GI tract cannot be cultured under standard laboratory conditions. Moreover, this approach also
does not account for community-level interactions between the bacteria nor the interactions between host and
bacteria. Thus, alternate methods of discovery are needed. Our approach is to model the microbiota as a
metabolic network, and employ a probabilistic search to identify possible biotransformation products of
selected metabolites that can be unambiguously attributed to bacteria. A critical new development is to capture
the contributions of the host organism through its array of xenobiotic transformation enzymes. Since many of
these enzymes exhibit a high degree of substrate flexibility, an algorithm based on pattern matching will be
developed to augment the probabilistic search based on reaction definitions. To establish proof-of-concept, we
plan to validate the predicted metabolites by performing targeted mass spectrometry measurements on fecal
culture samples and characterize the bioactivity of the confirmed metabolites. Our specific aims are as follows.
In Aim 1, we will build a metabolic network model of GI tract microbiota to enable focused predictions on
bacterial biotransformation products. We will analyze the network model by developing a pathway analysis
algorithm to predict and rank bacterial metabolites based on the likelihood that the relevant enzymes are
expressed in the GI tract microbiota. We will validate the model predictions by analyzing murine fecal cultures
as a surrogate experimental system for the GI tract microbiota. In Aim 2, we will augment the search algorithm
of Aim 1 with predictions on probable host modifications computed from pattern recognition analysis of known
CYP biotransformations. As in Aim 1, we will perform experimental validation of the model predictions using
cultured hepatocytes as a surrogate system for the liver. These studies are expected to demonstrate the
significant benefits of computational metabolic pathway analysis for targeted metabolomics, and provide a
generally applicable methodology for identifying bioactive microbiota metabolites that are beneficial to human
health.
这项提案的目标是建立一个新的,计算代谢组学平台,使有效的探索
细菌代谢物在胃肠道(GI)中的作用。越来越明显的是,微生物群-
衍生代谢物介导炎症和免疫调节背景下的重要信号,
人体胃肠道尽管有强烈的兴趣,但只有少数胃肠道中的生物活性微生物群代谢物具有
被识别。一个主要的挑战是存在于胃肠道中的代谢物的谱是极其复杂的。
复杂,因为微生物群可以进行各种生物转化反应,包括那些
并不存在于哺乳动物宿主中。传统的方法,如分离和培养单个细菌
鉴定这些培养物中产生的代谢物并没有取得多大成功,因为许多细菌
在标准实验室条件下不能培养胃肠道中的细菌。此外,这种方法还
不能解释细菌之间的群落水平的相互作用,也不能解释宿主和
细菌因此,需要替代的发现方法。我们的方法是将微生物群建模为
代谢网络,并采用概率搜索来识别可能的生物转化产物,
选择的代谢物,可以明确归因于细菌。一个关键的新发展是捕捉
宿主生物体通过其异生物质转化酶的阵列的贡献。因为许多
这些酶表现出高度的底物灵活性,基于模式匹配的算法将
开发用于基于反应定义来增强概率搜索。为了建立概念验证,我们
计划通过对粪便进行靶向质谱测量来验证预测的代谢物
培养样品并表征确认代谢物的生物活性。我们的具体目标如下。
在目标1中,我们将建立一个胃肠道微生物群的代谢网络模型,以实现对以下方面的集中预测:
细菌生物转化产物。我们将通过开发路径分析来分析网络模型
算法来预测和排名细菌代谢物的基础上的可能性,相关酶是
在胃肠道菌群中表达。我们将通过分析小鼠粪便培养物来验证模型预测
作为胃肠道菌群的替代实验系统。在目标2中,我们将增强搜索算法
的目标1与预测可能的主机修改计算从模式识别分析已知的
生物转化。与目标1一样,我们将使用以下方法对模型预测进行实验验证:
培养的肝细胞作为肝脏的替代系统。预计这些研究将证明
计算代谢途径分析对靶向代谢组学的显著益处,并提供了一个
用于鉴定对人类有益的生物活性微生物群代谢物的普遍适用的方法
健康
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KYONGBUM LEE其他文献
KYONGBUM LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KYONGBUM LEE', 18)}}的其他基金
A Machine-Learning Based Software Widget for Resolving Metabolite Identities
用于解析代谢物身份的基于机器学习的软件小部件
- 批准号:
9223450 - 财政年份:2016
- 资助金额:
$ 19.1万 - 项目类别:
Computational Metabolomics of Gut Microbiota Metabolites
肠道微生物代谢物的计算代谢组学
- 批准号:
8794445 - 财政年份:2014
- 资助金额:
$ 19.1万 - 项目类别:
Engineering an in vitro model of adipose tissue formation and metabolism
构建脂肪组织形成和代谢的体外模型
- 批准号:
8038517 - 财政年份:2010
- 资助金额:
$ 19.1万 - 项目类别:
Phenotype-Targeted Inference of Flux-Enzyme Correlations in Adipocyte Metabolism
脂肪细胞代谢中通量-酶相关性的表型靶向推断
- 批准号:
8036855 - 财政年份:2010
- 资助金额:
$ 19.1万 - 项目类别:
Phenotype-Targeted Inference of Flux-Enzyme Correlations in Adipocyte Metabolism
脂肪细胞代谢中通量-酶相关性的表型靶向推断
- 批准号:
8112505 - 财政年份:2010
- 资助金额:
$ 19.1万 - 项目类别:
Adipose Metabolic Profiling for Obesity Drug Targeting
用于肥胖药物靶向的脂肪代谢分析
- 批准号:
6850910 - 财政年份:2004
- 资助金额:
$ 19.1万 - 项目类别:
Adipose Metabolic Profiling for Obesity Drug Targeting
用于肥胖药物靶向的脂肪代谢分析
- 批准号:
6759565 - 财政年份:2004
- 资助金额:
$ 19.1万 - 项目类别:
Nano-Ceramic for Metabolic Stem Cell Engineering
用于代谢干细胞工程的纳米陶瓷
- 批准号:
6790765 - 财政年份:2004
- 资助金额:
$ 19.1万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant














{{item.name}}会员




