A Machine-Learning Based Software Widget for Resolving Metabolite Identities

用于解析代谢物身份的基于机器学习的软件小部件

基本信息

  • 批准号:
    9223450
  • 负责人:
  • 金额:
    $ 14.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Owing to recent technological advances in measurement platforms, it is now possible to simultaneously detect and characterize a very large number of metabolites covering a substantial fraction of the small molecules present in a biological sample. This presents an exciting opportunity to develop potentially transformative approaches to study cells and organisms. One major challenge in realizing this potential lies in processing and analyzing the data. A typical dataset from an untargeted experiment contains many of thousands of “features,” each of which could correspond to a unique metabolite. Analyzing such datasets to obtain meaningful biological information depends on reliably and efficiently resolving the chemical identities of the detected features. Currently, in silico fragmentation methods predict candidate metabolites that are scored and ranked based on how well the fragmentation explains the observed MS/MS spectrum, and on other factors influencing fragmentation such as bond dissociation energies and ionization conditions. Deciding which candidate metabolites is the best match for a particular feature in the context of the biological sample, however, is a daunting task. Extensive testing of candidate metabolites against chemical standards library may be prohibitive in terms of cost and efforts. We seek to develop software-enabled workflows centered on resolving metabolite identities. Our approach is to exploit knowledge of the biological context of a sample to identify the metabolites. Recognizing that the metabolites present in a sample result from enzyme-catalyzed biochemical reactions active in the corresponding biological system, we employ topological analysis and inference to best map the metabolites implied by the detected features to metabolic pathways that are feasible based on the genome(s) of cells in the biological system. Aim 1 develops a computational method based on Bayesian-inference to enhance candidate metabolite rankings that are obtained via in silico fragmentation analysis. Our method utilizes all available information (database lookups, in silico fragmentation analysis, and network/pathway context) to maximally inform and adjust the rankings. Aim 2 will build software widgets to implement the metabolite identification workflow within a data-analytics framework. As the analytics framework, we will use Orange, which allows the user to create interactive data analysis pipelines through a plug-and-play graphical user interface (GUI). Aim 3 will validate the computational method and software widget implementation. Experimental validation will utilize high-purity standards to confirm (or reject) the computationally assigned metabolite identities. Widget implementation will be evaluated through a focus group discussion with the widget users in the labs directed by the PIs. As project outcomes, we anticipate both a methodological advance in analyzing mass signature data as well as a suite of easily accessible software in the form of widgets.
由于测量平台的最新技术进步,现在可以同时检测 并表征覆盖小分子的相当大部分的大量代谢物 存在于生物样品中。这是一个令人兴奋的机会, 研究细胞和生物体的方法。实现这一潜力的一个主要挑战在于处理和 分析数据。来自非目标实验的典型数据集包含数千个“特征”, 每一种都可能对应一种独特的代谢物分析这些数据集以获得有意义的 生物信息依赖于可靠和有效地分辨被检测的生物的化学身份。 功能.目前,计算机碎片化方法预测候选代谢物, 基于碎片化对观察到的MS/MS谱的解释程度,以及其他影响 断裂,如键离解能和电离条件。决定哪个候选人 代谢物是生物样品背景下特定特征的最佳匹配,然而, 艰巨的任务根据化学标准品库对候选代谢物进行广泛测试可能是禁止的 in terms条款of cost成本and efforts努力.我们寻求开发以解析代谢物为中心的软件支持的工作流程 身份我们的方法是利用样本的生物背景知识来识别代谢物。 认识到样品中存在的代谢物是由酶催化的生化反应产生的 在相应的生物系统中,我们采用拓扑分析和推理来最好地映射 由检测到的特征暗示的代谢物与基于基因组可行的代谢途径 在生物系统中的细胞。目的1开发了一种基于贝叶斯推理的计算方法, 增强通过计算机碎片分析获得的候选代谢物排名。我们的方法 利用所有可用信息(数据库查找、计算机碎片分析和网络/通路 上下文),以最大限度地通知和调整排名。Aim 2将构建软件小部件来实现 在数据分析框架内的代谢物鉴定工作流程。作为分析框架,我们将使用 橙子,允许用户通过即插即用的图形化界面创建交互式数据分析管道 用户界面(GUI)。目标3将验证计算方法和软件小部件实现。 实验验证将使用高纯度标准品来确认(或拒绝)计算分配的 代谢物鉴别。将通过与小部件的焦点小组讨论来评估小部件的实现 实验室中的用户由PI指导。作为项目成果,我们预计, 分析大量签名数据以及一套以小部件形式提供的易于访问的软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KYONGBUM LEE其他文献

KYONGBUM LEE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KYONGBUM LEE', 18)}}的其他基金

Computational Metabolomics of Gut Microbiota Metabolites
肠道微生物代谢物的计算代谢组学
  • 批准号:
    8794445
  • 财政年份:
    2014
  • 资助金额:
    $ 14.76万
  • 项目类别:
Computational Metabolomics of Gut Microbiota Metabolites
肠道微生物代谢物的计算代谢组学
  • 批准号:
    8638680
  • 财政年份:
    2014
  • 资助金额:
    $ 14.76万
  • 项目类别:
Engineering an in vitro model of adipose tissue formation and metabolism
构建脂肪组织形成和代谢的体外模型
  • 批准号:
    8038517
  • 财政年份:
    2010
  • 资助金额:
    $ 14.76万
  • 项目类别:
Phenotype-Targeted Inference of Flux-Enzyme Correlations in Adipocyte Metabolism
脂肪细胞代谢中通量-酶相关性的表型靶向推断
  • 批准号:
    8036855
  • 财政年份:
    2010
  • 资助金额:
    $ 14.76万
  • 项目类别:
Phenotype-Targeted Inference of Flux-Enzyme Correlations in Adipocyte Metabolism
脂肪细胞代谢中通量-酶相关性的表型靶向推断
  • 批准号:
    8112505
  • 财政年份:
    2010
  • 资助金额:
    $ 14.76万
  • 项目类别:
Adipose Metabolic Profiling for Obesity Drug Targeting
用于肥胖药物靶向的脂肪代谢分析
  • 批准号:
    6850910
  • 财政年份:
    2004
  • 资助金额:
    $ 14.76万
  • 项目类别:
Adipose Metabolic Profiling for Obesity Drug Targeting
用于肥胖药物靶向的脂肪代谢分析
  • 批准号:
    6759565
  • 财政年份:
    2004
  • 资助金额:
    $ 14.76万
  • 项目类别:
Nano-Ceramic for Metabolic Stem Cell Engineering
用于代谢干细胞工程的纳米陶瓷
  • 批准号:
    6790765
  • 财政年份:
    2004
  • 资助金额:
    $ 14.76万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 14.76万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了