Improved Source Localization for Pediatric Epilepsy
改进小儿癫痫源定位
基本信息
- 批准号:8599493
- 负责人:
- 金额:$ 17.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-15 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAlgorithmsAnimalsAuditoryBostonBrainBrain regionCerebrospinal FluidChildhoodClinicalCurative SurgeryDataDecision MakingDevelopmentDevelopment PlansDiagnosisDiagnosticDisease ProgressionEffectivenessElectrical EngineeringElectrocorticogramElectrodesElectroencephalogramElectroencephalographyElectromagneticsEpilepsyExcisionFunctional Magnetic Resonance ImagingGoalsGoldHeadHealthHealth SciencesHealth TechnologyHumanImageImage AnalysisIndividualInternationalKnowledgeLeadLearningLesionMagnetic Resonance ImagingMapsMeasurementMeasuresMedicalMetabolismMethodsMetricModalityModelingMonitorMotorNatureNerve TissueNeurologyNeurosciencesNeurosurgeonOperating RoomsOperative Surgical ProceduresOutcomePatientsPediatric HospitalsPharmaceutical PreparationsPharmacotherapyPhysiologicalPositioning AttributeProceduresProcessProteinsResearchResearch PersonnelScalp structureSeizuresShadowing (Histology)Signal TransductionSourceStatistical ModelsStimulusStructureSurgically-Created Resection CavitySystemTechniquesTestingTimeTranslatingVisualWorkbasebioimagingbiophysical propertiescareercareer developmentclinical applicationclinical carecraniumeffective therapyexperiencefallsimprovedminimally invasiveneuroimagingoutcome forecastpre-clinicalreconstructionrelating to nervous systemscreeningsimulationsingle photon emission computed tomographysoftware developmentsymposium
项目摘要
DESCRIPTION (provided by applicant): I am an electrical engineer whose research focuses on the use of advanced algorithmic techniques to improve the reconstruction of biomedical images from physical data. My graduate work focused on the development of algorithms to improve pre-clinical imaging of fluorescent proteins in small animals. Since the fall of 2008, I have held a postdoctoral position at Children's Hospital Boston studying the use of scalp EEG data to non-invasively localize seizure foci for the planning of surgical interventions. My immediate career goals are to establish myself in the field of functional neuroimaging using electroencephalography. In the near term, I seek to demonstrate that these techniques can offer a non- invasive approach to the current clinical gold standard of electrocorticography. In the longer term, I want to translate high leadcount EEG to being a part of the standard clinical care of epilepsy. Additionally, I want to expand my research into the application of EEG localization to more general neuroscience topics such as auditory and visual evoked stimuli. This K25 will give me the clinical and medical experience necessary to complete a successful RO1 application, and transition to being an independent researcher. The proposed career development plan incorporates a combination of classroom learning and practical clinical shadowing to develop a greater understanding of basic neurology and its clinical applications. I will take several classes in neurology from the Harvard/MIT Health Science and Technology (HST) division. Additionally, I will shadow both epileptologists and neurosurgeons at Children's Hospital to attain a greater understanding of clinical procedure and the ways in which various sources of information affect diagnostic decision making. I will regularly attend surgical planning conferences, and observe the final resection procedures. Professionally, I will attend local presentations on neurology and neuroimaging, and a minimum of two national and international conferences on imaging and epilepsy per year. In as many as 30% of epilepsy patients, their condition is poorly controlled with existing medications. For these individuals, surgical resection of afflicted nervous tissue may be the only effective treatment approach. However, poor localization of the seizure focus means only a small number of these patients ever see an operating room. Current state-of-the-art clinical procedure uses a wide range of structural and functional tests to localize seizure activity. The current gold standard for localization of the epileptic focus is electroencephalography (ECoG). However, because of the highly invasive nature of this procedure only a small number of patients are evaluated. Advanced algorithmic processing of scalp EEG data has the potential to offer similar accuracy from a noninvasive screening technique. This would allow far more patients to be comprehensively screened for surgical potential, both after conventional drug therapy has failed and early in the progression of the disease, before epileptic networks have developed which may reduce the effectiveness of surgical interventions. The EEG signal is highly dependent upon the physical, and thereby electrical, structure of the head. The use of structural information as prior knowledge in the source localization problem can be essential to enhancing the capability for identifying and localizing seizure foci. The long term goal is to improve scalp based EEG source localization to a point where the use of highly invasive sub-dural electrodes can be reduced or eliminated. Furthermore, highly accurate localization would potentially enable minimally invasive treatment approaches to be pursued, improving patient prognosis. The specific aims of this proposal are to 1) Construct and evaluate improved patient-specific modeling of electrical propagation. We will examine improved methods for modeling the skull and cerebrospinal fluid regions of the brain using new MR imaging approaches such as ultrashort echo time (UTE) imaging, and model based methods to account for partial volume effects in sulci. 2) Develop statistical models for data fusion within the EEG source localization problem. Constructed from structural and functional information extracted from MR imaging studies, these will be used in a Bayesian inversion framework to obtain statistically optimal maps of source activity. 3) Evaluate and quantify the benefits of high lead-count EEG systems. We will use the 128-lead EEG system currently at Children's Hospital to perform additional EEG studies and compare the accuracy of source localizations to those obtained with subsampled electrode data. We expect the additional information provided by the higher number of electrodes to yield increased localization accuracy, and thereby improved diagnoses. 4) Evaluate the relationship between localization and surgical outcome. Using quantitative metrics presented in Specific Aim 3, we will evaluate the interaction between accuracy and surgical outcome. Additionally, we will investigate whether a metric applied to the localization itself can act as a statistically significant predictor of surgical outcome.
描述(申请人提供):我是一名电气工程师,其研究重点是使用先进的算法技术来改进从物理数据重建生物医学图像。我的研究生工作重点是开发算法,以改善小动物荧光蛋白的临床前成像。自2008年秋季以来,我一直在波士顿儿童医院担任博士后职位,研究如何使用头皮EEG数据来非侵入性地定位癫痫灶,以规划手术干预。我目前的职业目标是在使用脑电图仪的功能神经成像领域确立自己的地位。在短期内,我试图证明这些技术可以提供一种非侵入性的方法,以达到目前临床皮层脑电检查的黄金标准。从长远来看,我希望将高铅计数脑电转化为癫痫标准临床护理的一部分。此外,我想将我的研究扩展到EEG定位应用到更一般的神经科学主题,如听觉和视觉诱发刺激。这个K25将给我必要的临床和医学经验,以完成成功的RO1申请,并过渡到一名独立的研究人员。拟议的职业发展计划结合了课堂学习和实际的临床跟踪,以加深对基础神经学及其临床应用的了解。我将参加哈佛/麻省理工学院健康科学与技术(HST)分部的几门神经学课程。此外,我将在儿童医院跟踪癫痫专家和神经外科医生,以更好地了解临床程序和各种信息来源影响诊断决策的方式。我会定期参加手术计划会议,并观察最终的切除程序。在专业方面,我将参加神经学和神经成像的本地演讲,以及每年至少两次关于成像和癫痫的国内和国际会议。在多达30%的癫痫患者中,现有药物对他们的病情控制很差。对于这些人来说,手术切除受影响的神经组织可能是唯一有效的治疗方法。然而,癫痫灶定位不良意味着这些患者中只有一小部分人曾去过手术室。目前最先进的临床程序使用广泛的结构和功能测试来定位癫痫活动。目前定位癫痫灶的金标准是脑电(ECoG)。然而,由于这种手术的高度侵入性,只对一小部分患者进行了评估。对头皮脑电数据进行先进的算法处理,有可能提供与非侵入性筛查技术类似的准确性。这将使更多的患者能够在常规药物治疗失败后以及疾病进展的早期,在癫痫网络形成之前进行全面的手术潜力筛查,这可能会降低手术干预的有效性。EEG信号高度依赖于头部的物理结构,从而也依赖于头部的电气结构。在来源定位问题中使用结构信息作为先验知识,对于提高识别和定位癫痫灶的能力至关重要。长期目标是改进基于头皮的脑电源定位,以达到减少或取消使用高侵入性硬膜下电极的程度。此外,高度准确的定位可能会使微创治疗方法成为可能,从而改善患者的预后。这项建议的具体目标是1)构建和评估改进的针对患者的电传播模型。我们将使用新的磁共振成像方法,如超短回声时间(UTE)成像,以及基于模型的方法来考虑脑沟的部分体积效应,来研究改进的方法来模拟颅骨和脑脊液区域。2)建立脑电源定位问题中数据融合的统计模型。从磁共振成像研究中提取的结构和功能信息构建,这些信息将被用于贝叶斯反演框架,以获得源活动的统计最优地图。3)评估和量化高含铅量脑电系统的益处。我们将使用目前在儿童医院使用的128导联EEG系统进行额外的EEG研究,并将源定位的准确性与使用欠采样电极数据获得的准确性进行比较。我们期望更多的电极所提供的额外信息将提高定位的准确性,从而改善诊断。4)评价定位与手术效果的关系。使用特定目标3中提出的量化指标,我们将评估准确性和手术结果之间的交互作用。此外,我们将调查应用于定位的指标本身是否可以作为手术结果的有统计学意义的预测因子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damon Hyde其他文献
Damon Hyde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damon Hyde', 18)}}的其他基金
Improved Source Localization for Pediatric Epilepsy
改进小儿癫痫源定位
- 批准号:
8045851 - 财政年份:2011
- 资助金额:
$ 17.35万 - 项目类别:
Improved Source Localization for Pediatric Epilepsy
改进小儿癫痫源定位
- 批准号:
8401525 - 财政年份:2011
- 资助金额:
$ 17.35万 - 项目类别:
Improved Source Localization for Pediatric Epilepsy
改进小儿癫痫源定位
- 批准号:
8786461 - 财政年份:2011
- 资助金额:
$ 17.35万 - 项目类别:
Improved Source Localization for Pediatric Epilepsy
改进小儿癫痫源定位
- 批准号:
8212365 - 财政年份:2011
- 资助金额:
$ 17.35万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 17.35万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




