Developing a New Therapeutic for the Treatment of Invasive Aspergillosis
开发治疗侵袭性曲霉菌病的新疗法
基本信息
- 批准号:8522961
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-18 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAffinityAmericasAntifungal AgentsAspergillosisAspergillus fumigatusBindingBone Marrow TransplantationCalcineurinCalcineurin PathwayCalcineurin inhibitorCandidiasisCaspofunginCause of DeathCell WallCell physiologyChemicalsChemistryClinicalCommunicable DiseasesComputer SimulationCyclosporineCytochrome P450DataDevelopmentDiseaseDrug KineticsDrug resistanceEukaryotaFDA approvedFK506Fungal Drug ResistanceGeneticGoalsGrowthHealth Care CostsHomology ModelingHumanImmunocompromised HostImmunosuppressionImmunosuppressive AgentsIn VitroIncidenceIndustrial fungicideInfectionInvestigationKnowledgeLibrariesMichiganMoldsMycosesOrganOutcomeParentsPathogenesisPatientsPermeabilityPhysiologyProcessProteinsPublishingRelative (related person)ResistanceRoentgen RaysSaccharomyces cerevisiaeSalesSequence HomologySocietiesSolidSpecificityStructureStructure-Activity RelationshipTacrolimus Binding Protein 1ATestingTherapeuticTherapeutic IndexToxic effectTranslatingTransplant RecipientsTreatment outcomeUnited StatesUniversitiesVirulenceVoriconazoleWorkanalogbasebiological adaptation to stresscalcineurin phosphataseclinical efficacyclinically relevantcostdata modelingdesigneconomic costeffective therapyfungusimprovedin vitro activityinnovationinsightmodel designmortalitynext generationnovelnovel therapeuticspathogenpatient populationpreclinical studypreventprofessorpublic health relevanceresistant strainresponsescreeningsmall molecule
项目摘要
DESCRIPTION (provided by applicant): Invasive aspergillosis (IA), caused by the fungus Aspergillus fumigatus, is associated with mortality rates of 40- 50%. In response to the lack of effective treatments, the Infectious Diseases Society of America highlighted A. fumigatus as one of only six pathogens for which it mandated that a "substantive breakthrough is urgently needed". IA accounts for the largest financial burden of all invasive fungal infections, with an annual economic cost in the United States of over $1.1 billion. Driven by the growing immunosuppressed patient population, both the incidence and mortality due to A. fumigatus have risen three-fold in the last decade. While much is known regarding the cellular processes required for fungal pathogenesis, translating understanding into tangible clinical benefit has been difficult due to the fact that these fungal pathogens and their hosts have similar physiology. As a result, current antifungal agents have limited clinical efficacy, are poorly fungicidal in the host, are occasionally toxic, and are increasingly ineffective due to emerging resistance. Thus, innovative antifungal targeting agents and strategies are critically needed. It has been well established that molecules targeting fungal calcineurin (FC) have extremely potent antifungal activity against a broad range of fungi. Over the past decade, our collaborator has established that calcineurin is required for A. fumigatus hyphal growth and virulence. Moreover, calcineurin is required for fungal stress response and small molecule or genetic inhibition of calcineurin thwarts drug resistance. The challenge of exploiting FC as an antifungal agent is due to structural and sequence homology with human calcineurin (HC). Knowledge of the HC pathway and the immunosuppressive capacity of calcineurin inhibition has been one of the greatest contributions to our current solid organ and bone marrow transplantation abilities. However, inhibition of HC causes severe immunosuppression and toxicity. Recent chemical innovations have enabled Amplyx to rapidly create libraries of analogues of FK506 and FK520 that were previously synthetically intractable. These new chemistries have resulted in promising analogs with substantially lower immunosuppression than the parent compounds yet maintain a high-degree of antifungal activity. Based on these preliminary results, our goals in this proposal are to (1) Use existing structural data and perform computational modeling to design non-immunosuppressive calcineurin inhibitors of A. fumigatus; (2) Synthesize and purify a library of these calcineurin inhibitors for initial testing; and (3) Screen and select these compounds for low
immunosuppression, potent antifungal activity, and favorable pharmacokinetics. The impact of this work will be to utilize a structural biologic approach to design, synthesize, and test fungal-specific calcineurin inhibitors with minimal immunosuppressive action and robust antifungal activity against both A. fumigatus wild-type and antifungal resistant strains, potentially transforming the treatment paradigm for IA.
描述(由申请人提供):由真菌烟曲霉引起的侵袭性曲霉菌病 (IA) 与 40-50% 的死亡率相关。由于缺乏有效的治疗方法,美国传染病学会强调烟曲霉是其“迫切需要取得实质性突破”的六种病原体之一。 IA 是所有侵袭性真菌感染中最大的经济负担,在美国每年造成的经济损失超过 11 亿美元。在免疫抑制患者人数不断增长的推动下,烟曲霉的发病率和死亡率在过去十年中增加了三倍。尽管人们对真菌发病机制所需的细胞过程了解很多,但由于这些真菌病原体及其宿主具有相似的生理学,因此将理解转化为切实的临床益处一直很困难。因此,目前的抗真菌药物临床疗效有限,对宿主的杀真菌作用很差,偶尔有毒,并且由于出现耐药性而越来越无效。因此,迫切需要创新的抗真菌靶向药物和策略。众所周知,针对真菌钙调神经磷酸酶 (FC) 的分子对多种真菌具有极强的抗真菌活性。在过去的十年中,我们的合作者已经确定钙调磷酸酶是烟曲霉菌丝生长和毒力所必需的。此外,钙调磷酸酶是真菌应激反应所必需的,并且钙调磷酸酶的小分子或基因抑制可阻止耐药性。利用 FC 作为抗真菌剂的挑战是由于其与人钙调神经磷酸酶 (HC) 的结构和序列同源性。对 HC 途径和钙调神经磷酸酶抑制的免疫抑制能力的了解是对我们当前实体器官和骨髓移植能力的最大贡献之一。然而,抑制 HC 会导致严重的免疫抑制和毒性。最近的化学创新使 Amplyx 能够快速创建 FK506 和 FK520 类似物库,而这些以前在合成上很难处理。这些新的化学物质产生了有前途的类似物,其免疫抑制显着低于母体化合物,但仍保持高度的抗真菌活性。基于这些初步结果,我们在本提案中的目标是(1)使用现有的结构数据并进行计算建模来设计烟曲霉的非免疫抑制性钙调神经磷酸酶抑制剂; (2) 合成并纯化这些钙调神经磷酸酶抑制剂库以进行初步测试; (3) 筛选并选择这些化合物的低
免疫抑制、有效的抗真菌活性和良好的药代动力学。这项工作的影响将是利用结构生物学方法来设计、合成和测试真菌特异性钙调神经磷酸酶抑制剂,这些抑制剂对烟曲霉野生型和抗真菌耐药菌株具有最小的免疫抑制作用和强大的抗真菌活性,有可能改变 IA 的治疗模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MITCHELL W MUTZ其他文献
MITCHELL W MUTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MITCHELL W MUTZ', 18)}}的其他基金
Discovering a Targeted Inositol Phosphorylceramide Synthase Inhibitor to Improve
发现一种靶向肌醇磷酸神经酰胺合酶抑制剂来改善
- 批准号:
8732202 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Discovering a Combination Therapeutic Approach to Use in the Treatment of Cryptoc
发现治疗隐毛虫病的联合治疗方法
- 批准号:
8542151 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Developing a New Therapeutic for the Treatment of Invasive Aspergillosis
开发一种治疗侵袭性曲霉菌病的新疗法
- 批准号:
8703007 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Discovering a Combination Therapeutic Approach to Use in the Treatment of Cryptoc
发现治疗隐毛虫病的联合治疗方法
- 批准号:
8617317 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
A Structural Approach for Treating Drug Resistant Fungal Pathogens
治疗耐药真菌病原体的结构方法
- 批准号:
8497619 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
A Structural Approach for Treating Drug Resistant Fungal Pathogens
治疗耐药真菌病原体的结构方法
- 批准号:
8315147 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Discovering a Novel Immunophilin to Lower the Toxicity of Cancer Therapeutics
发现一种新型亲免素来降低癌症治疗药物的毒性
- 批准号:
8395183 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
A Computer Modeling Approach to Create an Antifungal to Improve the Treatment of
一种计算机建模方法来创建抗真菌药物以改善治疗
- 批准号:
8411022 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Designing HIV Protease Inhibitors with Lower Dosing Requirements and Lower Toxici
设计剂量要求较低且毒性较低的 HIV 蛋白酶抑制剂
- 批准号:
8263701 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants














{{item.name}}会员




