Molecular Mechanisms of Cell Invasion
细胞侵袭的分子机制
基本信息
- 批准号:8511580
- 负责人:
- 金额:$ 26.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-25 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAdhesionsAdhesivesAreaAscitesBiochemicalBiogenesisBiologyBloodBody FluidsBuild-itCell membraneCell physiologyCell surfaceCell-Cell AdhesionCellsClinicalCommunicationCytoskeletonDepositionDiagnosticDiseaseDisease ProgressionDistalDown-RegulationEffectivenessElementsEnvironmentExcisionExtracellular MatrixFundingGoalsGrowth FactorIntegrinsInvadedInvestigationLeadLifeLocationMalignant NeoplasmsMediatingMediator of activation proteinMembraneMembrane Protein TrafficMetalloproteasesMethodsMolecularMyosin Light ChainsMyosin Type IINeoplasm MetastasisPathway interactionsPeptide HydrolasesPhenotypePhosphorylationPopulationPrimary NeoplasmProcessProtein FamilyProteinsProteolysisRecruitment ActivityRecyclingRegulationResearchResistanceSignal PathwaySignal TransductionSiteSorting - Cell MovementStructureSurfaceTestingTherapeuticTherapeutic InterventionTissuesTumor BiologyTumor Cell BiologyTumor Cell InvasionUnited States National Institutes of HealthUrineVesicleWorkbasecancer complicationcancer diagnosiscell motilityextracellularfascininsightinterestmemberneoplastic cellparacrineparticlereceptorrhotherapeutic targettumor
项目摘要
DESCRIPTION (provided by applicant): This is an application to investigate the mechanisms of microvesicle biogenesis in invasive tumor cells. It builds on exciting findings generated with previous NIH funding on a unique population of vesicles, called microvesicles that contain functionally active proteases and are released by tumor cells as they acquire invasive potential. The release of protease-loaded microvesicles may serve as a mechanism to bring about matrix degradation and perhaps even deposit paracrine information at distal locations, thus creating paths of "least resistance" as tumor cells invade and migrate through surrounding tissue. This is distinct from pericellular proteolysis at invadopodia, which enables localized matrix degradation juxtaposed to the leading edge. Discovering that there may exist more than one mode of proteolytic invasion, limits the effectiveness of any invasion-targeted therapeutic strategy that does not include both focal and distal proteolysis. While a significant amount of research has been directed to the understanding mechanisms of invadopodia formation and function at sites of cell invasion, microvesicles biogenesis and function remains a relatively understudied area of tumor biology. However, recent accruing evidence demonstrating the bona fide presence of microvesicles in body fluids (blood, urine and ascites), and their potential to serve as indicators of disease, has extended interest and intensified research efforts in microvesicle biology and function. The overarching objective of this application is to define molecular mechanisms of microvesicle formation. The project focuses on the central hypothesis that specific ARF and Rab proteins direct membrane type proteases and other proteins to sites of microvesicle biogenesis and that tight interchanges between RhoA and Rac1 signaling governs the plasticity required for switching between microvesicle and invadopodia-mediated proteolytic invasion. We will address two specific aims. In the first aim, we will define endocytic recycling pathways that direct cargo to sites of microvesicle biogenesis as well as examine how recruitment of specific Rab effectors regulate actomyosin-based contraction required for microvesicle biogenesis. In the second aim, we will examine the spatial activation of RhoA and Rac1 in invasive tumor cells. We will also investigate potential mechanisms that regulate Rac1 down regulation during microvesicle formation and how Rho signaling facilitates the process. Given recent heightened interest in the biology and clinical promise of microvesicles, these investigations are highly current. They will advance present understanding of microvesicle biogenesis and have potential to provide targets for diagnostic as well as therapeutic application.
描述(由申请人提供):这是一份研究浸润性肿瘤细胞中微泡生物发生机制的申请。它建立在先前NIH资助的一种独特的囊泡群的令人兴奋的发现之上,这种囊泡被称为微囊泡,它含有功能活跃的蛋白酶,当肿瘤细胞获得侵袭潜力时被释放出来。承载蛋白酶的微泡的释放可能是导致基质降解的一种机制,甚至可能在远端位置沉积旁分泌信息,从而在肿瘤细胞侵入和迁移周围组织时创造“最小阻力”的路径。这是不同的细胞外蛋白水解在invadopdia,使局部基质降解并置前缘。发现可能存在不止一种蛋白水解侵袭模式,限制了任何不包括局灶性和远端蛋白水解的靶向侵袭治疗策略的有效性。虽然大量的研究都是为了了解细胞侵袭部位的侵入性囊泡形成和功能的机制,但微泡的生物发生和功能仍然是肿瘤生物学中一个相对缺乏研究的领域。然而,最近越来越多的证据表明,体液(血液、尿液和腹水)中确实存在微囊泡,它们有可能作为疾病的指标,这扩大了人们对微囊泡生物学和功能的兴趣,并加强了研究工作。本应用程序的首要目标是定义微泡形成的分子机制。该项目的核心假设是,特定的ARF和Rab蛋白将膜型蛋白酶和其他蛋白质直接引导到微泡生物发生的位点,RhoA和Rac1信号之间的紧密交换控制了微泡和侵入物介导的蛋白水解入侵之间切换所需的可塑性。我们将讨论两个具体目标。在第一个目标中,我们将定义将货物引导到微泡生物发生位点的内噬循环途径,并研究特定Rab效应物的招募如何调节微泡生物发生所需的基于肌动球蛋白的收缩。在第二个目标中,我们将研究侵袭性肿瘤细胞中RhoA和Rac1的空间激活。我们还将研究在微泡形成过程中调控Rac1下调的潜在机制,以及Rho信号如何促进这一过程。鉴于最近对微囊泡的生物学和临床前景的高度兴趣,这些研究是高度流行的。他们将推进目前对微泡生物发生的理解,并有可能为诊断和治疗应用提供靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRISLYN D'SOUZA-SCHOREY其他文献
CRISLYN D'SOUZA-SCHOREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRISLYN D'SOUZA-SCHOREY', 18)}}的其他基金
New insights into extracellular signal transduction
细胞外信号转导的新见解
- 批准号:
10566506 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Pro-tumorigenic roles of a VHL isoform in Clear Cell Renal Cell Carcinoma
VHL 亚型在透明细胞肾细胞癌中的促肿瘤作用
- 批准号:
10649049 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 26.33万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 26.33万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 26.33万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 26.33万 - 项目类别:
Postdoctoral Fellowships