Functional Profiling of Human Disease Targets
人类疾病靶标的功能分析
基本信息
- 批准号:8625367
- 负责人:
- 金额:$ 45.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Bardet-Biedl SyndromeBiochemicalBiological ProcessCellsCodeComplexCongenital MegacolonDNA SequenceDataDiagnosticDiseaseEtiologyExcisionExhibitsGene MutationGenesGenetic HeterogeneityGenetic VariationGenotypeGoalsHereditary DiseaseHumanHuman GeneticsHuman GenomeInborn Genetic DiseasesIndividualLeadLinkMacromolecular ComplexesMapsMeasuresMethodsModelingMolecularMutationOutcomePatientsPhenotypePropertyProtein-Protein Interaction MapProteinsProteomeRelative (related person)Retinitis PigmentosaSolutionsSystemTherapeuticTherapeutic InterventionTimeTissuesUsher SyndromeVariantWorkclinical phenotypedisease classificationdisease-causing mutationdisorder subtypegenetic variantgenome sequencinghuman diseaseimprovedinsightknockout genemacromoleculenetwork modelsnext generation sequencingpleiotropismpublic health relevancetrait
项目摘要
PROJECT SUMMARY
Our overall goal in this proposal is to functionally analyze mutations in human genes associated with a set of
model complex disorders for which a large number of uncharacterized genetic variants have been obtained.
With the prospect of knowing the complete genotype of multiple individuals and with increasingly sophisticated
ways of measuring phenotypes, biomedicine can now explore genotype-phenotype relationships in
mechanistic detail. A fundamental issue to be resolved in the characterization of genotypes is how genetic
variation directly relates to phenotype. Our premise is that sequence alone is not sufficient. What is needed is
a disruptive shift to better understand the functional and mechanistic molecular consequences of genotypic
differences. Our solution to this challenging problem is to investigate the complex macromolecular networks, or
"interactomes", formed by large numbers of interacting genes and gene products inside cells and to the
perturbations of these networks that occur as a consequence of genetic variation. In characterizing genotype-
to-phenotype relationships via an interactome network approach, genotypic variation can lead to either a
complete gene knockout, modeled as removal of a node and all of its edges in the network, or alternatively, as
interaction-specific perturbation, leading to the removal or strengthening of specific interactions, modeled as
edge-specific, or "edgetic" perturbations. We propose that to better understand genotype-phenotype
relationships, "edgotypes" should be characterized by systematically establishing the state of node removal
versus edgetic perturbations for every biophysical interaction.
These strategies will be applied to a small set of complex clinical phenotypes chosen because they exhibit
extensive genetic heterogeneity, pleiotropy and phenotypic overlap. These four clinical phenotypes (Usher
syndrome; retinitis pigmentosa; Hirschsprung disease; Bardet-Biedl syndrome) have also been studied enough
that ample numbers of mutations are known to enable edgotyping profiling at sufficient depth to generate
informative disease networks. Study of these four clinical phenotypes should accordingly provide fundamental
insights into genotype-phenotype relationships, the impact of DNA sequence variants on specific biological
functions, disease modules, and disease classification.
Our specific aims are to:
i) Generate deep and robust interactome network maps for the selected set of clinical phenotypes,
ii) Generate edgotypic maps of perturbed physical and biochemical interactions amongst gene products
implicated in the selected set of clinical phenotypes,
iii) Exploit edgotyping data computationally to derive mechanistic molecular insights into genotype-phenotype
relationships for the selected set of clinical phenotypes.
项目摘要
我们在这项提案中的总体目标是从功能上分析与一组基因相关的人类基因突变。
已经获得了大量未表征的遗传变异的复杂疾病模型。
随着了解多个个体的完整基因型的前景和日益复杂的基因组学的发展,
测量表型的方法,生物医学现在可以探索基因型-表型关系,
机械细节基因型表征中需要解决的一个基本问题是,
变异与表型直接相关。我们的前提是,仅仅序列是不够的。所需要的是
一个破坏性的转变,以更好地了解基因型的功能和机制的分子后果,
差异我们解决这个具有挑战性的问题的方法是研究复杂的大分子网络,或
“相互作用组”,由细胞内大量相互作用的基因和基因产物形成,
这些网络的扰动是遗传变异的结果。在描述基因型时-
通过相互作用组网络方法,基因型变异可以导致
完全基因敲除,建模为网络中节点及其所有边的移除,或者替代地,建模为
特定相互作用的扰动,导致特定相互作用的消除或加强,建模为
边缘特异性或"边缘"扰动。我们建议,为了更好地了解基因型-表型
关系,"edgotypes"的特点应该是系统地建立节点删除的状态
与每一个生物物理相互作用的边缘扰动。
这些策略将应用于一小组复杂的临床表型,因为它们表现出
广泛的遗传异质性、多效性和表型重叠。这四种临床表型(Usher
综合征;视网膜色素变性;先天性巨结肠症; Bardet-Biedl综合征)也已得到充分研究
已知足够数量的突变能够在足够的深度进行边缘分型分析,
疾病信息网络。因此,对这四种临床表型的研究应提供基本的
深入了解基因型-表型关系,DNA序列变异对特定生物学特性的影响,
功能、疾病模块和疾病分类。
我们的具体目标是:
i)为所选的一组临床表型生成深度和稳健的相互作用组网络图,
ii)生成基因产物之间受干扰的物理和生物化学相互作用的边缘型图谱
涉及所选的一组临床表型,
iii)通过计算利用边缘分型数据以获得对基因型-表型的机制分子见解
所选临床表型组的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Calderwood其他文献
Michael A Calderwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Calderwood', 18)}}的其他基金
Exploring alternate targets for inhibition of virus infection by PPI disruption
探索通过 PPI 破坏抑制病毒感染的替代靶点
- 批准号:
10217383 - 财政年份:2021
- 资助金额:
$ 45.27万 - 项目类别:
Exploring alternate targets for inhibition of virus infection by PPI disruption
探索通过 PPI 破坏抑制病毒感染的替代靶点
- 批准号:
10356929 - 财政年份:2021
- 资助金额:
$ 45.27万 - 项目类别:
Development of an OPTogenetic InteractoMics Assay (OPTIMA)
OPTogenic InteractoMics 检测 (OPTIMA) 的开发
- 批准号:
10057519 - 财政年份:2020
- 资助金额:
$ 45.27万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 45.27万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 45.27万 - 项目类别:
Standard Grant














{{item.name}}会员




