Incomplete Penetrance via Edgetic Suppression
通过边缘抑制实现不完全渗透
基本信息
- 批准号:10259687
- 负责人:
- 金额:$ 59.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAnimal ModelApplications GrantsAttentionBiochemicalBiologicalBiological ModelsBiological ProcessCell physiologyComplexDNADNA-Protein InteractionDevelopmentDiseaseEnvironmentEssential GenesGenesGeneticGenetic PhenomenaGenomeGenotypeHeterogeneityHistone DeacetylaseHumanHuman GenomeImpairmentIndividualLeadLearningMapsMendelian disorderMethodsMicroRNAsModelingMolecularMolecular GeneticsMutationPenetrancePhenotypePopulation GeneticsPropertyProteinsProteomeResourcesSaccharomyces cerevisiaeSiteSystemTestingVariantYeast Model SystemYeastsbasecausal variantdisease phenotypeexhaustionexome sequencingfunctional genomicsgene environment interactiongene interactiongene productgenetic variantgenomic datagenomic locusgenomic toolshuman diseasehuman reference genomeimprovedmutation screeningnetwork modelsprotein protein interactionresiliencetooltraityeast genomeyeast protein
项目摘要
Abstract
A decade and a half after the release of the human genome sequence, how well do we understand the
molecular mechanisms underlying genotype-phenotype relationships? Importantly, as we generate ever-
increasing numbers of genome sequences from diseased but also healthy individuals, how well can we predict
the phenotype of an individual from information available about their genotype? The more we learn about the
human genome, the further we seem to deviate from the simple model: “mutation in gene X leads to
perturbation of gene product X, which leads to disease A”. Among the most prevailing and mysterious
deviations from this simple model are: (i) incomplete penetrance, whereby only a subset of individuals carrying
a mutation are affected by the disease, and (ii) variable expressivity, whereby not all individuals affected by a
given mutation are affected equally. These two interconnected phenomena have recently attracted attention
because sequencing of exomes and genomes of healthy individuals shows an unanticipated burden of
damaging mutations, with an average of ~300 damaging variants and >50 variants causing Mendelian
disorders. This burden of damaging variants suggests a heretofore-unrecognized level of genetic resilience.
It is becoming increasingly clear that gene products function in the context of complex interactome networks
that need to be considered to fully illuminate genotype-phenotype relationships. Proteome-scale systematic
interactome maps, which model these networks of molecular components and interactions between them as
“nodes” and “edges”, respectively, are rapidly becoming available to initiate such approaches. We have started
to dissect how disease-associated mutations impair interactions in the context of interactome networks. We
have found that while common variants from healthy individuals rarely affect protein-protein interactions or
DNA-protein interactions, a majority of disease-associated alleles perturb interactions, with about half
corresponding to what we refer to as “edge-specific” or ``edgetic'' alleles, i.e. alleles affecting a single or a
subset of interactions while leaving other interactions unperturbed.
This grant application is focused on understanding incomplete penetrance based on gene-gene interactions.
Our central hypothesis is that incomplete penetrance can very often be best explained by edgetic alleles that
are genetically suppressed by compensatory alleles in interacting partners. Due to a huge limitation in
statistical power to test this “edgetic suppression” hypothesis in human, we will first concentrate on S.
cerevisiae as a model organism to develop the necessary concepts, methods and tools. We will leverage the
recent release of ~1,000 yeast genome sequences to identify and characterize large numbers of pairs of
natural variants that are damaging individually, but cooperatively functional. The strategies developed and
general mechanisms discovered will be directly applicable to solving incomplete penetrance in humans.
摘要
在人类基因组序列公布15年后,我们对人类基因组的理解有多好?
基因型-表型关系的分子机制?重要的是,当我们产生-
越来越多的基因组序列来自患病的,但也健康的个体,我们如何预测,
从基因型的信息中推断出个体的表型?我们越了解
人类基因组,我们似乎越偏离简单的模型:“基因X的突变导致
基因产物X的扰动,其导致疾病A”。在最流行和最神秘的
从这个简单的模型的偏差是:(i)不完全的遗传,其中只有一个子集的个人携带
突变受疾病影响,和(ii)可变的表达性,其中不是所有受突变影响的个体都受疾病影响。
突变的影响是一样的。这两个相互关联的现象最近引起了关注
由于健康个体的外显子组和基因组测序显示出意想不到的负担,
破坏性突变,平均约300个破坏性变体和>50个导致孟德尔遗传的变体。
紊乱这种破坏性变异的负担表明了迄今为止尚未认识到的遗传弹性水平。
基因产物在复杂的相互作用组网络中发挥作用,这一点越来越清楚
需要考虑到充分阐明基因型-表型关系。蛋白质组规模系统
相互作用组图谱,它将这些分子组分的网络和它们之间的相互作用建模为
“节点”和“边缘”分别迅速变得可用于启动这样的方法。我们已经开始
剖析疾病相关突变如何损害相互作用网络的背景下的相互作用。我们
他们发现,虽然来自健康个体的常见变异很少影响蛋白质-蛋白质相互作用,
在DNA-蛋白质相互作用中,大多数疾病相关等位基因干扰相互作用,约有一半
对应于我们所称的“边缘特异性”或“边缘性”等位基因,即影响单个或多个等位基因的等位基因。
相互作用的子集,同时保持其他相互作用不受干扰。
这项拨款申请的重点是了解基于基因-基因相互作用的不完全遗传。
我们的中心假设是,不完全的边缘等位基因通常可以最好地解释,
在基因上被相互作用的伴侣中的补偿等位基因抑制。由于巨大的限制,
为了在人类中检验这种“边缘抑制”假设,我们将首先集中于S。
酿酒酵母作为一个模式生物,发展必要的概念,方法和工具。我们将利用
最近发布了约1,000个酵母基因组序列,以识别和表征大量的
这些自然变异个体具有破坏性,但却具有协同作用。制定的战略和
所发现的一般机制将直接适用于解决人类的不完全昏迷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Calderwood其他文献
Michael A Calderwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Calderwood', 18)}}的其他基金
Exploring alternate targets for inhibition of virus infection by PPI disruption
探索通过 PPI 破坏抑制病毒感染的替代靶点
- 批准号:
10217383 - 财政年份:2021
- 资助金额:
$ 59.12万 - 项目类别:
Exploring alternate targets for inhibition of virus infection by PPI disruption
探索通过 PPI 破坏抑制病毒感染的替代靶点
- 批准号:
10356929 - 财政年份:2021
- 资助金额:
$ 59.12万 - 项目类别:
Development of an OPTogenetic InteractoMics Assay (OPTIMA)
OPTogenic InteractoMics 检测 (OPTIMA) 的开发
- 批准号:
10057519 - 财政年份:2020
- 资助金额:
$ 59.12万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 59.12万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 59.12万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 59.12万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 59.12万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 59.12万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 59.12万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 59.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 59.12万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 59.12万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 59.12万 - 项目类别: