Evolutionary paths toward intrinsic antibiotic resistance
内在抗生素耐药性的进化路径
基本信息
- 批准号:8733070
- 负责人:
- 金额:$ 4.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Aminoglycoside AntibioticsAnabolismAntibiotic ResistanceAntibiotic susceptibilityAntibioticsAreaAttentionBacteriaBacterial InfectionsBiological AssayCatalogingCatalogsCause of DeathCerealsClinicalComplexCost AnalysisCoupledDataDevelopmentDiagnosticDrug TargetingEscherichia coliEvolutionFolic AcidFoundationsFutureGene Expression ProfileGenesGeneticGenetic DeterminismGenetic EpistasisGenomeHigh-Throughput Nucleotide SequencingIncidenceIndividualInfectionKnock-outLaboratoriesLearningLibrariesMapsMeasuresMethodsMicrobeMinimum Inhibitory Concentration measurementMolecular ProfilingMorbidity - disease rateMutationPathway interactionsPharmaceutical PreparationsPhysiologicalProcessRegulatory PathwayResearchResearch PersonnelResistanceResistance ProcessResistance developmentSignal PathwaySocietiesSorting - Cell MovementTreatment ProtocolsWorkantimicrobialbacterial resistancebeta-Lactamsbiological adaptation to stresscombatcostdosagedrug discoveryfitnessgenetic linkage analysisglobal healthinformation gatheringinhibitor/antagonistmicroorganismmortalitynext generationnovelnovel diagnosticsnovel therapeuticspublic health relevanceresearch studyresistance mechanismresistant strainresponsetreatment strategytrend
项目摘要
DESCRIPTION (provided by applicant): Widespread use or misuse of antibiotics has spurred evolutionarily adaptations that enable bacteria to survive many of our most powerful drugs. While existing antimicrobials are losing their effect, there has been in recent years a steep decline in the development of new drugs. If this trend continues, the drugs we have to combat resistant microorganisms will soon be depleted. The growing incidence of illness and death caused by antibiotic resistant infections, coupled with the cost that society has to pay for them,
reflect our urgent need for new antibiotics that either block or circumvent resistance mechanisms, or attack new targets. We need a better understanding of the different ways in which resistance develops so that we can develop new methods to identify and counteract it. The research proposed here will provide a broader picture of the evolution of resistance and dissect the genetic mechanisms of its development. We plan to conduct laboratory evolution experiments in which we adapt E. coli to antibiotics from three commonly used classes and discern the mechanisms by which they develop resistance using high-¿throughput sequencing and whole genome linkage analysis. Once contributing loci are identified and validated, we will use global epistasis assays and transcriptome analysis to place them in the broader network context of specific signaling and regulatory pathways. We will classify these mutations in order to help simplify and untangle the magnitude and complexity of antibiotic-¿bacterial dynamics. Previous research suggests that clinical levels of antibiotic resistance may develop through the sequential accumulation of mutations of small individual effect. Understanding the order in which different mutations occur will give us information that may be useful for developing better diagnostics and in delaying the development of resistance. Throughout this research, special attention will be paid to the trajectory of resistance in the face of increasing drug dosage and also to associated fitness costs to the microorganism under other conditions. The ability of microbes to resist antibiotics often negatively impacts their fitness in the absence of treatment; however, mutations that confer resistance are often quickly followed by additional mutations elsewhere in the genome that compensate for these costs. Understanding the order in which different mutations occur will give us information about how strains become increasingly resistant. Also, since the fitness costs determine the strength of selection against resistant bacteria, analysis of these costs may inform novel treatment regimens. The aim of this research is to uncover new targets to combat resistance, new pathways that synergize with a particular antibiotic and, more broadly, to strengthen and enrich the underlying principles that will lay the foundation for the next generation of novel therapies, drug discovery, and diagnostics in the field.
描述(由申请人提供):抗生素的广泛使用或误用刺激了进化适应,使细菌能够在我们许多最强大的药物中生存。虽然现有的抗菌素正在失去作用,但近年来新药的开发却急剧下降。如果这种趋势继续下去,我们用来对抗耐药微生物的药物将很快耗尽。抗生素耐药性感染引起的疾病和死亡的发生率不断上升,加上社会必须为此支付的费用,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Nogueira Ketcham其他文献
Alexandra Nogueira Ketcham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Nogueira Ketcham', 18)}}的其他基金
Evolutionary paths toward intrinsic antibiotic resistance
内在抗生素耐药性的进化路径
- 批准号:
8597648 - 财政年份:2013
- 资助金额:
$ 4.27万 - 项目类别:
Evolutionary paths toward intrinsic antibiotic resistance
内在抗生素耐药性的进化路径
- 批准号:
9123635 - 财政年份:2013
- 资助金额:
$ 4.27万 - 项目类别:
Evolutionary paths toward intrinsic antibiotic resistance
内在抗生素耐药性的进化路径
- 批准号:
8893101 - 财政年份:2013
- 资助金额:
$ 4.27万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 4.27万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 4.27万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 4.27万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 4.27万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 4.27万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 4.27万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 4.27万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 4.27万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 4.27万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 4.27万 - 项目类别:
Discovery Early Career Researcher Award