Resources for development and validation of Radiomic analyses & Adaptive Therapy

放射组学分析的开发和验证资源

基本信息

  • 批准号:
    8751514
  • 负责人:
  • 金额:
    $ 63.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Imaging based cancer research is in the beginning phases of a transition from analyses based on human observers to the use of advanced computing platforms and software to automatically extract large sets of quantitative image features relevant to prognosis or treatment response. These feature sets can be used to infer phenotypes or correlate with gene-protein signatures. In parallel, radiation oncology is responding to the quantitative requirements of adaptive therapy, where therapy decisions take into account the early response of the tumor to the treatment. Both of these advanced techniques share similar resource requirement, in particular high capacity information repositories co-located with high performance computing capabilities and tools to perform advanced analytics. Drawing on broad experience in imaging informatics we will expand upon the existing Cancer Imaging Archive (TCIA) platform and computational resources of the Washington University Center for High Performance Computing to provide leading edge research services to Quantitative Imaging Network (QIN) researchers. To facilitate this translational research and share our processes and experiences with the academic cancer research community, we propose to: 1. Provide data hosting, management and access capabilities to QIN researchers including longitudinal data collections and advanced Radiation Therapy (RT) data structure support; 2. Develop a QIN portal to support advanced quantitative image processing and biomarker validation through co-located scalable computing and big data infrastructure; 3. Support biomarker development and validation with advanced analytics that employ a new generation of statistical tools and data modeling techniques; 4. Provide training and support to permit QIN researchers to effectively utilize this suite of advanced capabilities combined with open source community enablement tools. We have assembled a strong team with a long history of collaboration and extensive experience with open source software development methodologies and advanced imaging informatics. The long-term goal of our team is to develop and deploy software and services to drive advanced quantitative image analysis and biomarker development and provide a gateway for researchers to interrogate multi-modality datasets and mine them to create and validate novel hypotheses in cancer research.
描述(由申请人提供):基于成像的癌症研究正处于从基于人类观察者的分析向使用先进的计算平台和软件自动提取与预后或治疗反应相关的大量定量图像特征的过渡的开始阶段。这些特征集可用于推断表型或与基因-蛋白质签名相关。与此同时,放射肿瘤学正在响应适应性治疗的定量要求,其中治疗决策考虑到肿瘤对治疗的早期反应。这两种先进技术共享类似的资源需求,特别是高容量信息存储库与高性能计算能力和工具共存以执行高级分析。 凭借在成像信息学方面的丰富经验,我们将扩展现有的癌症成像档案(TCIA)平台和华盛顿大学高性能计算中心的计算资源,为定量成像网络(QIN)研究人员提供领先的研究服务。为了促进这种转化研究,并与学术癌症研究界分享我们的过程和经验,我们建议:1。为QIN研究人员提供数据托管、管理和访问功能,包括纵向数据收集和高级放射治疗(RT)数据结构支持; 2.开发一个QIN门户网站,通过协同定位的可扩展计算和大数据基础设施,支持高级定量图像处理和生物标志物验证; 3.通过采用新一代统计工具和数据建模技术的高级分析,支持生物标志物的开发和验证; 4.提供培训和支持,使QIN研究人员能够有效地利用这套先进的功能与开源社区支持工具相结合。 我们组建了一支强大的团队,拥有悠久的合作历史,在开源软件开发方法和先进的成像信息学方面拥有丰富的经验。我们团队的长期目标是开发和部署软件和服务,以推动先进的定量图像分析和生物标志物开发,并为研究人员提供一个网关,以查询多模态数据集并挖掘它们,以创建和验证癌症研究中的新假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fred William Prior其他文献

Fred William Prior的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fred William Prior', 18)}}的其他基金

Resources for development and validation of Radiomic analyses & Adaptive Therapy
放射组学分析的开发和验证资源
  • 批准号:
    8919857
  • 财政年份:
    2014
  • 资助金额:
    $ 63.15万
  • 项目类别:
HIGH PERFORMANCE BIOMEDICAL IMAGING COMPUTER RESOURCES
高性能生物医学成像计算机资源
  • 批准号:
    7498360
  • 财政年份:
    2009
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomedical Imaging Informatics Core
生物医学成像信息学核心
  • 批准号:
    7728531
  • 财政年份:
    2008
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomarkers for Charcot Arthropathy in Diabetic Patients
糖尿病患者夏科关节病的生物标志物
  • 批准号:
    7618813
  • 财政年份:
    2007
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomarkers for Charcot Arthropathy in Diabetic Patients
糖尿病患者夏科关节病的生物标志物
  • 批准号:
    7467375
  • 财政年份:
    2007
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomarkers for Charcot Arthropathy in Diabetic Patients
糖尿病患者夏科关节病的生物标志物
  • 批准号:
    7332022
  • 财政年份:
    2007
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomedical Imaging Informatics Core
生物医学成像信息学核心
  • 批准号:
    8136687
  • 财政年份:
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomedical Imaging Informatics Core
生物医学成像信息学核心
  • 批准号:
    8325647
  • 财政年份:
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomedical Imaging Informatics Core
生物医学成像信息学核心
  • 批准号:
    8382205
  • 财政年份:
  • 资助金额:
    $ 63.15万
  • 项目类别:
Biomedical Imaging Informatics Core
生物医学成像信息学核心
  • 批准号:
    7935238
  • 财政年份:
  • 资助金额:
    $ 63.15万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了